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Background and Objectives

» Develop and calibrate simplified models to
simulate structural behavior under large
displacements during progressive collapse

 Validate models using high fidelity analyses
as well as available experimental data at
component/connection and system level

» Develop measures of “robustness” to assess
progressive collapse resistance

Background

» Progressive collapse

— A situation where local
failure of a primary
structural component
leads to the collapse of
adjoining members
which, in turn, leads to
additional collapse.
(GSA 2003b)

Ronan Point building after May 16, 1968 collapse
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Recent Interest in US on Progressive Collapse

* ?, -
| uhl nulil
B M\\

Structural Robustness:
Ability of a structural system to accommodate local
damage and arrest the progression of failures

Example: Murrah Building,
Oklahoma, USA

Y Building constructed
1974-1976

Office building:
9-story R/C frame +
shear wall structure
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Murrah Federal Building (1995)

Blast and Progressive Collapse Damage to
 Original Building
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Evaluation Methodologies

» Direct analysis

Imposed loading is modeled explicitly (earthquake, shock
wave etc.)

Iterative process involves element removal algorithms and
criteria for element removal

» Indirect analysis or threat independent method
“Post-event”, evaluation on the effects of the damage
resulting from loading event
Alternate Path Method (APM) by General Services
Administration (GSA 2003)

+ Pre-assumed scenarios: removal of critical elements in
structure (typically a lower floor column or wall)

+ Structural analysis for a prescribed set of load combinations
+ Evaluation for the potential of progressive collapse




Modeling Approaches

S Microscopic modeling: continuum-based, detailed model
Good for analyzing local behavior
Intensive computational effort

» Macroscopic modeling: component-based, simplified model

Not suitable for analyzing detailed effects but ideal for analyzing
complete structural system

Computational efficiency
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Beam-Column Joint Model (3D)
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Modeling Approaches

"+ Other considerations
Implicit vs. Explicit

v' Computational cost

v' Convergence

Planar vs. 3D modeling
v' Beam-slab composite action

v Slab membrane action
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Material Modeling

-
» Softening behavior and mesh sensitivity
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Material Modeling

Post-peak behavior of concrete in compression

v" Avoiding localization
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Material Modeling

Bond effects

v" Premature bar fracture due to fully-bonded assumption

v Anchorage failure modes

v Modified strain-stress relation of reinforcing bar to considering bond

effects  _ N—
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Structural Member Models

» Detailed finite element models or discrete element models

v Reinforcing bars are directly modeled and bond effects are
considered through interface elements or contact.

v Reinforcing bars are indirectly modeled (springs, steel layers, or
homogenized reinforced concrete materials) and bond effects are
included implicitly or often ignored.

» Macroscopic (or reduced) models
Interface element to

v' Lumped plasticity models incorporate bending,
e . bond slip, shear, and
v' Distributed plasticity models torS|on

Rotational and
_____ shearspnng

cluster
D\\D ------ Nonlinear fiber beam element

Zero
length

Distributed plasticity
Elastic beam element Zero

Lumped plasticity

Beam-Column Connection Models
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3D Floor System Modeling (LS-DYNA)

Beam nodes (Slave nodes) are tied
to nearby shell nodes (Master
nodes). Force and moment
resultants between nodes are
transferred through constraints.

Integrated shell

Shell element
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Reference surfaces of beams and
slab are shifted to the top surface
instead of the center

Validation of reduced order model
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Validation of Computational Models

1= Detailed and reduced models (Bao et al., J. Struct. Eng., 140, 2014) validated
by two full-scale assembly test (Lew et al., ACI Struct. J., 111(4), 2014).
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Validation of Computational Models

Computational model Vhoading: dsspboemcnt (smuh

(1) Column load vs. vertical disp.

(2) Horizontal disp. vs. vertical-disp.'_

Vinloading displacement (mm)

Building Configurations

0.0

-0 @ 3

®

0.0

®

® ©
A F Y
LI |l
Design of buildings for | | | | |
Seismic Design | | | | |
Categories:
SDC C - Atlanta 2 l l l l l
SDC D - Seattle ? ® | | | ”
: L 1Ll
L 1Ll
L 1Ll
| | ||
(D“
LI

8/16/2016

13



Validation: Example One
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Simulating Column Removal
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COLLAPSE TESTING

IN COLLABORATION WITH
HUNAN UNIVERSITY, CHINA

Half-scale, 3-story model
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Construction
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Gas Gun Trial Test
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View of

Column removal

Vertical displacement N

| responses

25 .
? 5

0Tt —
E (7 Node-A]
2 154 L .
E 1| ;
é a'.“"" ' . N
g 101 N e i i
e Node-B1

Time [s]

.......

8/16/2016

19



Proposed test protocol
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Observed cracking in slab
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Extended time histories of vertical
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Robustness assessment

Deterministic Approaches:

Remove columns one-by-one and conduct push-
down analysis to determine reserve strength

Remove columns one-by-one and assess ability of
structure to resist design gravity loads

QUESTION: Order of column removal?
Remove column carrying largest fraction of applied

gravity loads
(Fascetti, Kunnath, Nistico, Eng. Struct. 2015)
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Proposed Energy-Based Approach

» Sequential loss of columns is characterized by a significant
variation of internal energy

» Kinetic energy rises quickly when a column is removed and
then drops to zero when the structure reaches a steady state.

« Strain energy also increases when a column is removed,
because of the expected increase of deformations, and
stabilizes around a value that includes both elastic and

inelastic deformations.

KEglobal

a, is the maximum deformation at any node in the “local
area” normalized with respect to the story height

Local Area & Identifying next critical column

4

4

After removal of column B1

After removal of column B1 & B2

Strain energy density of the "affected zone" provides the best
indicator of the next critical column. The "affected zone" of a
column refers to the horizontal elements — beams and slabs —
that directly connect to it.
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Procedure

Gravity Analysis
under design loads

!

Remove column i’

J

Estimate damage

Identify
next critical
column

Case study
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Beam Design
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Column Design

Dimensions
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Column Spacing: 9 m

Case 1: Sequence C3-C4-C5-C6

Column Spacing: 6 m

Case 2: Sequence A1-B1-A2

Column Spacing: 6 m

Column Spacing: 9 m
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Displacement Ratio* & (Damage Index)

after each column removal

Case 1: C3-C4-C5-C6 Case 2: A1-B1-A2

15t column 1.58% 2.47%
removal (0.01) (0.04)

2nd column 3.03% 32.28%
removal (0.03) (0.32)

3 column 4.39% » 100%
removal (0.05) (0.66)

4th column 6.12%

removal (0.11)

* Ratio of peak displacement to story height

|

SEQUENCE: C3-B3-A3-D3

& story building_10/5 parts_5x7 integ._BLANK
Contours of Z-displacement

min=0, at node# 111000

max=0, at node# 111000

Column Spacing: 9 m

Column Spacing: 6 m

0.000e+00 _
0.000e+00
0.000e+00
0.000e+00
0.000e+00

0.000e+00
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Column Spacing: 9 m

SEQUENCE: A1-B1-A2

Column Spacing: 6 m

6 story building_10/5 parts_5x7 integ. BLANK
Contours of Z-displacement

min=0, at node# 111000

max=0, at node# 111000

0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

Conclusions

Validated material and component models are
essential to accurately characterize the large
deformation response during progressive collapse.

Load transfer within critical beams is a three-phase
process: arch action, plastic hinging and catenary
response

3D and slab effects need to be incorporated

Alternative Path Method (APM) is effective in
assessing vulnerability of structures to loss of critical
load-bearing members. It does not, however, provide
information about the reserve capacity of a system

Proposed Energy-Based Index is an adequate
approach to assess proximity to collapse
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