In silico modelling of the mechanical behaviour of bone and bone-implant systems

Pankaj Pankaj

School of Engineering, Institute *for* Bioengineering The University of Edinburgh Scotland, UK

Indian Institute of Science, Bangalore – 18 February 2016

Exact evaluation of contact stress state in computational elasto-plasticity

Nenad Pankaj Bicanic

Department of Civil Engineering, University College Swansea, Singleton Park, Swansea SA2 8PP, UK (Received August 1988)

INTRODUCTION

Various stress return algorithms in elastoplastic analyses using the finite element method require the increment, the of stress stag deformation is outside the yiel factor R is req

 $F(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_1)$

The simplest suggested in interpolation:

but in general surface $F(\sigma)$, th not satisfy (4),

Crisfield, MA (1991). Nonlinear Finite Element Analysis of Solids and Structures, Wiley.

Сотр. тип. лрр. тесп. а спуну., 10, 201 211 (1210).

- [A3] Armen, H., Assumptions, models and computational methods for plasticity, Computers & Structures, 10, 161-174 (1979).
- [B1] Besseling, J. F., A theory of elastic, plastic, and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery and secondary creep, JAM, 24, 529-536 (1958).
- [B2] Bicanic, N. P., Exact evaluation of contact stress state in computational elasto-plasticity, Engineering Comp., 6, 67-73 (1989).
- [B3] Braudel, H. J., Abouaf, M. & Chenot, J. L., An implicit and incremental formulation for the solution of elastoplastic problems by the finite element method, *Computers and Structures*, 22 (5), 801–814 (1986).

Founded in 1583, the sixth-oldest university in the English-speaking world

We are consistently ranked one of the top 50 universities in the world^{*} * QS, THES – Thomson Reuters, and Shanghai Jiao Tong Rankings 2015

100% of our departments are conducting world leading research *

• 2014 UK-wide Research Excellence Framework

Adam Fergusson + Arthur Conan Doyle + Benjamin Ruch + Cordon Brown + Huang Kuan + dan Wilmut + James Young Sumpson + John Wicherspoon + Joseph hister + Paul Nurse + Peter Higgs + Peter Mark Roget + Joseph Black + Patrick Cuddes + Robert Sibbald + Walter Scott + Winston Churchill + Zhong Nanshan =

19 Nobel Prize winners and15 Olympic medals

THE UNIVERSITY of EDINBURGH

Charles Darwin + Charles Glover Barkla + David Hume +

James elerk Maxwell + James Hutton + Max Born +

Julius Kumbarage Nyerere + Jessie Chrystal Macmillan +

dan Deary + Robert Louis Stevenson + Jennie Lee +

michael Atiyah + Sophia Jex-Blake + Edward Appleton +

Influencing the world since 1583

Edinburgh Global

Relationships

'Pop up campuses' / annual visits

India 2015

- 40 academics

India 2016

- Activities in Pune, Chennai, Mumbai, Delhi, Bengaluru, Vellore
- Participation in MII
- Interaction with industry
- Interaction with government
- Student participation

Strategy

- Partnerships
- Attracting best talent
- Student mobility

Motivation

- Ageing population fractures and mortality, implant suitability
- Bone structure/behaviour of interest to pharmaceutical industry
- Implants need to last longer
- Patients expect to remain active
- Potential to replace expensive clinical trials

Modelling – Information required

- Geometry: subdivided into elements 1/2/3D
- Boundary conditions and interactions
- Material properties: linear/nonlinear, isotropic/anisotropic, time dependent/ independent
- Loads: static/dynamic

Boundary conditions

Boundary conditions – stresses in the pelvis

Constrained at the sacro-iliac joints

Boundary conditions – stresses in the pelvis

Muscles

- NIVERS CONCEPTION OF CONCEPTION
- Gluteus maximus; 2. Gluteus medius; 3. Gluteus minimus; 4. Psoas (not shown); 5. Iliacus; 6. Rectus femoris (straight head); 7. Rectus femorus (reflected head); 8. Tensor fasciae latae; 9. Sartorius; 10. Pectineus;
 Semitendinosus; 12. Semimembranosus; 13. Biceps femoris (long head); 14. Adductor magnus; 15. Adductor
 - longus; 16. Adductor brevis; 17. Gracilis; 18. Piriformis; 19. Gemellus superior; 20. Gemellus inferior;

21. Quadratus femoris

Boundary conditions – stresses in the pelvis

Ligaments

0--0

Anterior sacroliliac;
 Interosseus sacroliliac (hidden);
 Posterior sacroliliac;
 Sacrospinous;
 Sacrotuberous;
 Iliolumbar;
 Inguinal;
 Superior pubic;
 Arcuate pubic

Phillips, Pankaj, Howie, Usmani, Simpson — *J Med Eng & Phy,* 2007

Boundary conditions - constrained

von Mises stress in the trabecular bone for the constrained BC model

Boundary conditions – muscles and ligaments

von Mises stress in the trabecular bone for the ML BC model

NIVE RS

Phillips, Pankaj, Howie, Usmani, Simpson — J Med Eng & Phy, 2007

Bone microstructure

Microarchitecture of the femoral head

Morphometrical Parameters

- BV/TV
- Trabecular thickness (Tr. Th.)
- Structural model thickness (SMI)
- Degree of anisotropy (DA)

Thin cortex

Physeal transition

Strong column of trabeculae from calcar to physeal scar

Radially orientated trabeculae in epiphysis

Low density in inferomedial head

Hip Fracture Fixation

Femoral Scans

NIVE ROLL

3D: BV:TV (Density)

Trabecular Thickness (Tb. Th.)

Material properties: Elasticity

Material properties

- Variations inhomogeneity
- Linear elastic isotropic or transtropic or orthotropic or anisotropic
- Time dependent e.g. viscoelasticity
- Inelasticity e.g. plasticity
- Etc

Cortical bone data

Cortical bone

- µCT scans of cortices from the anterior femoral midshaft, (Melbourne Femur Collection)
 - 27 females, 50 males
 - 7µm isotropic scanning resolution
- Scanning and micro-architecture analysis Cooper et al. 2007
- This study variation of mechanical properties with micro-architecture

Select sub-samples

Label solid/void

 Generate triangular surface. Approx.
 20,000 triangles per surface

Generate meshApprox 250k elements

Constructed 3D image and mesh

- Six numerical strain states computationally applied
- Full elasticity tensor evaluated
- Tensor reoriented to best fit orthotropy assumption

- Q1: Is cortical bone in femoral midshaft orthotropic?
- A1: Yes

$$Error^{ORT} = \max_{\varepsilon \neq 0} \frac{\left\| \varepsilon - \varepsilon^{ORT} \right\|}{\left\| \varepsilon \right\|}$$

Periosteal: 0.16% median, 3.86% max Endosteal: 2.16% median, 11.48% max

Q2: Which indices of micro-architecture correlate best with elastic constants?
A2: Ca.V/TV
We also considered Ca.S/TV, Ca.Dm/TV, DA

Results – E

Results $-v_{cl}$

Results – periosteal-endosteal variation

Conclusions

- It providess all orthotropic constants
- Ca.V/TV is best (and only required) predictor
- All constants reduce with increasing porosity

Donaldson et al., 2011, IMechE, H

Trabecular bone – elastic properties

- µCT scans of trabecular bone from the femoral head (Tissue Bank of the Scottish National Blood Transfusion service)
 - 10 female, 2 male (age 71.3 ± 7.6 years)
 - 6 OA and 6 OP
 - 30µm isotropic scanning resolution

Methodology – µCT scan data

 5mm cubic regions extracted from 10 locations for each head

Methodology - µCT scan data

10 scans for each of head = 120 scans

Medial plane

Central plane

Methodology

Constructed 3D image and mesh

Results – regression analysis

- Q2: Which indices of micro-architecture correlate best with elastic constants?
- A2: Porosity
 - We also considered Ca.S/TV, Ca.Dm/TV, DA

Results – Anisotropy

Variation of E_max/E_min vs location

- Large range on both planes :
 - 3.52 on central plane
 - 2.75 on medial plane
- Mean = 1.87
- Wider range at medial plane
- Mean OP = 1.95
- Mean OA = 1.80

Trabecular bone and snow

Trabecular bone and snow

Material properties: Time-dependent

Motivation

- Trabecular bone exhibits time-dependent behaviour
- Time dependent nature needs to be explored to predict
 - Orthopaedic implant loosening
 - The response to traumatic events sudden dynamic loads
 - Age related non-traumatic fractures

How to measure time-dependent behaviour – viscoelasticity?

- Creep/Relaxation/Dynamic
- Need inter-conversion methods
- Creep may contain irrecoverable strains
- Need loading and unloading experiments

Creep-recovery experiments

Machining cores

Samples cored out

Sample with end-caps, hydrated

Creep-recovery experiments, Zwick

µCT scanning (Skyscanner 1172)

Creep-recovery experiments...

- 20 cylindrical bovine samples (5 from trochanter, 15 from femoral head) with marrow
- Force for 200 sec; recovery for 600 sec for each cycle
- Stresses corresponding to: 0.25, 0.4%, 0.6%, 0.85, 1%, 1.5% strain

Creep-recovery curves

- Creep rate is higher with lower BV/TV
- Creep behaviour changes with stress levels
- Irrecoverable strains exist at the end of each at cycles
- Creep part of the curve may contain plastic and residual strains

Results: Dense sample, BVTV=35%

Linear VE models do not predict well the VE response even at very lower strains Nonlinear VE models predict well

Results

BFH08S

- Total strain is composed of viscoelastic and viscoplastic strains
- Coupled viscoelastic-viscoplastic model predicted strains accurately

- Time-dependent response varies nonlinearly with stress levels and comprises recoverable (viscoelastic) and irrecoverable (viscoplastic) strains
- Nonlinear VE-VP model predicts the behaviour well at apparent level

Material properties: Strain-based plasticity

- Stress based criteria require too many parameters
- Bone yield anisotropic in stress space isotropic in strain space
- Experimental evidence to suggest that yielding of bone is based on strain rather than stress

Strain-based criterion concept

Strain-based criterion concept

Strain-based criterion concept

Material properties: Plasticity – nonlinear homogenisation

Motivation

- Use FE to evaluate yield behaviour of trabecular bone – nonlinear homogenisation
- Assess how properties translate from microscale to macroscale when using different constitutive laws for the bone tissue
- To relate apparent level yield surfaces to microarchitectural indices

Methods

Right - Reconstructed scan. Left - Binarised image

FE meshes. Left – 26.9% BV/TV. Right – 12.3% BV/TV.

- Two sample with very different morphologies, scanned at 17 µm on a µCT system
- Binary segmentation using Gomez *et al.* approach*
- Coordinate axes of the stack of images were aligned to MIL axes
- Scans transformed to voxelised FE meshes through an *in-house* developed Message Passing Interface (MPI) script
- The dense and porous models have 29M and 13M degrees of freedom, respectively.
- 5 mm cubes used
- Used the approach with 20 samples

* Gomez et al. A comparative study of automatic thresholding approaches for 3D x=ray tomography of trabecular bone. Med Phys (2013)

Load cases

- Elastic homogenisation requires 6 uniaxial loading cases
- Nonlinear homogenisation requires "infinite" load cases
- 171 load cases applied to each sample with linear boundary displacements.
 - Same ratios
 - o 3 uniaxial normal tension
 - o 3 uniaxial normal compression
 - o 12 biaxial normal
 - 8 triaxial normal
 - o 3 uniaxial shear
 - 3 biaxial shear
 - 1 triaxial shear
 - 18 biaxial normal-shear
 - Different ratios
 - o 24 biaxial normal
 - o 48 triaxial normal
 - 6 biaxial shear
 - o 6 triaxial shear
 - o 36 biaxial normal-shear

Behaviour of different samples

NNIVE,

INB

Florencio et al., submitted

Behaviour of different samples

Florencio et al., JMBBM, submitted

Application - Ilizarov fixation

Geometry and material properties

2.1% porosity C.Area = 319.2mm² C.Th = 5.10mm

12.6% porosity C.Area = 319.2mm² C.Th = 5.10mm

24.0% porosity C.Area = 265.3mm² C.Th = 3.64mm

Elastic properties - orthoptropy

Methodology – key features

- Elastic properties of bone
 - Orthotropic
 - Vary with "age"
 - Periosteum to endosteum variation
- Bone nonlinearity strain-based plasticity
- Geometrical nonlinearity
- Contact interface (not tied)

Arrangement of wires

Results – yielded bone

Example 3: 2 and 4 wire fixation

Effect of wire tension on volume of yielded bone:

IFM in 2 and 4 wire fixation i.e. construct stiffness

Conclusions – Ilizarov fixators

- Yielding never occurred through the entire cortical thickness
- Bone displacement is independent of age
- Increased yielding with ageing
- Increased wire tension reduces bone yielding

Donaldson, Pankaj, Simpson, 2012, J Orth Res

Locking plates

Stiffness in literature

Study

Loading conditions

Ahmad et al. 2007

Hoffmeier et al. 2011

Dunlap et al. 2011

Our loading conditions

Loading conditions

An analytical tool for locking plates

MacLeod and Pankaj – Poster M292 – Monday

Conclusions

IFM

- Patient-specific material properties small role
- Implant-bone interface modelling small role
- Device configuration (placement, number, tension, materials) – major role
- Nonlinear geometry major role
- Loading conditions major role
- Device loosening
 - All above

NIVE ROLL

MacLeod and Pankaj, 2014 — Comput Biomech Medicine, Springer

UK-India Education and Research Initiative

Thank you

Francesc Levrero Florencio Finn Donaldson* Erica Sales Krishna Manda **Rob Wallace** Paul Jenkins Shuqiao Zhu Noel Conlisk* Andrew Phillips* Alisdair Macl eod* Chloe Scott Jerome Goffin Qing Ye Adib Hamdani Hamish Simpson Colin Howie

Marco Viceconti Enrico Dall'Ara Yuan Chen John Clement **David Thomas** Dave Cooper Davide Ruffoni Philipp Schneider Alina Levchuk Alexander Zwahlen Puneet Mahajan Ralph Muller Praveen Srivastava Chaman Chandel Suhail Ahmad

pankaj@ed.ac.uk

