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Introduction

The reliability of structures as a discipline is primarily focussed

on the calculation of failure probabilities of structural

components or systems of components.
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that most quantities characterizing a structure and its loading
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Introduction

The reliability of structures as a discipline is primarily focussed

on the calculation of failure probabilities of structural

components or systems of components.

Failure is defined as violation of a specified limit state.

The concept of failure probability occurs since it is recognized

that most quantities characterizing a structure and its loading

conditions are subject to uncertainty. Hence random variables are

used to model such quantities.

In principle, failure probabilities can be accurately predicted by

standard Monte Carlo simulation methods, but the computational

burden may be prohibitive.
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Introduction

A Monte Carlo based method for estimating reliability which

aims at reducing the computational cost is therefore proposed.
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Introduction

A Monte Carlo based method for estimating reliability which

aims at reducing the computational cost is therefore proposed.

The method exploits the regularity of tail probabilities to set up

an approximation procedure for the prediction of the far tail

failure probabilities. It is based on estimating the failure

probabilities by Monte Carlo simulation at more moderate levels.
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A motivating example

Let R and S be two independent Gaussian variables representing

the capacity and the demand, respectively, in the simplest safety

format.
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Let R and S be two independent Gaussian variables representing

the capacity and the demand, respectively, in the simplest safety

format.

That is, the safety margin M = R− S. Failure is assumed to

occur when M ≤ 0.

The probability of failure is then pf = Prob(M ≤ 0).
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A motivating example

Let R and S be two independent Gaussian variables representing

the capacity and the demand, respectively, in the simplest safety

format.

That is, the safety margin M = R− S. Failure is assumed to

occur when M ≤ 0.

The probability of failure is then pf = Prob(M ≤ 0).

In the present case, pf = Φ(−β), where Φ(·) denotes the

cumulative probability distribution of an N(0, 1) variable and β

denotes the Cornell safety index.
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A motivating example

Let R and S be two independent Gaussian variables representing

the capacity and the demand, respectively, in the simplest safety

format.

That is, the safety margin M = R− S. Failure is assumed to

occur when M ≤ 0.

The probability of failure is then pf = Prob(M ≤ 0).

In the present case, pf = Φ(−β), where Φ(·) denotes the

cumulative probability distribution of an N(0, 1) variable and β

denotes the Cornell safety index.

That is, β = µM/σM , where E[M ] = µM and Var[M ] = σ2

M .

µM = µR − µS and σM =
√

σ2

R + σ2

S .
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A motivating example

The safety margin M will now be extended to a parametrized

class of safety margins in the following way

M(λ) = M − µM (1− λ) ,

where the scaling parameter λ satisfies 0 ≤ λ ≤ 1.
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A motivating example

The safety margin M will now be extended to a parametrized

class of safety margins in the following way

M(λ) = M − µM (1− λ) ,

where the scaling parameter λ satisfies 0 ≤ λ ≤ 1.

It follows that M = M(1), and the Cornell index β(λ) of M(λ)

is seen to be given as β(λ) = λβ since E[M(λ)] = λµM and

Var[M(λ)] = σ2

M .
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A motivating example

The safety margin M will now be extended to a parametrized

class of safety margins in the following way

M(λ) = M − µM (1− λ) ,

where the scaling parameter λ satisfies 0 ≤ λ ≤ 1.

It follows that M = M(1), and the Cornell index β(λ) of M(λ)

is seen to be given as β(λ) = λβ since E[M(λ)] = λµM and

Var[M(λ)] = σ2

M .

Hence, the failure probability

pf (λ) = Prob(M(λ) ≤ 0) = Φ(−λβ).
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A motivating example

Assuming that pf = pf (1) is small, e.g. less than about 10−3, it is

obtained that:

pf (λ) = Φ(−λβ) ≈
λ→1

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

φ(λβ)

=
1√
2π

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

exp
{

− β2λ2

2

}

,

where φ is the probability density function of an N(0, 1) variable.
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A motivating example

Assuming that pf = pf (1) is small, e.g. less than about 10−3, it is

obtained that:

pf (λ) = Φ(−λβ) ≈
λ→1

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

φ(λβ)

=
1√
2π

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

exp
{

− β2λ2

2

}

,

where φ is the probability density function of an N(0, 1) variable.

In fact, a uniformly close approximation (with an error less than

7.5 · 10−8) which is similar to the right hand side of this equation can

be given for all positive values of the argument z of Φ(−z).
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A motivating example

Assuming that pf = pf (1) is small, e.g. less than about 10−3, it is

obtained that:

pf (λ) = Φ(−λβ) ≈
λ→1

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

φ(λβ)

=
1√
2π

( 1

λβ
− 1

(λβ)3
+

3

(λβ)5

)

exp
{

− β2λ2

2

}

,

where φ is the probability density function of an N(0, 1) variable.

In fact, a uniformly close approximation (with an error less than

7.5 · 10−8) which is similar to the right hand side of this equation can

be given for all positive values of the argument z of Φ(−z).

For any safety margin for which a FORM or SORM approximation

applies after transformation to normalized Gaussian space, it is realized

that the failure probability pf (λ) will be given by an equation

somewhat similar to the equation above.
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The general case

In the general case the safety margin M = G(X1, . . . ,Xn) is

expressed in terms of n basic variables.
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The general case

In the general case the safety margin M = G(X1, . . . ,Xn) is

expressed in terms of n basic variables.

A similar analysis as for the simple example cannot be easily

done without making some assumptions.

However, motivated by the simple example and the ensuing

comment, we shall make the following assumption about the

behaviour of the failure probability,

pf (λ) ≈
λ→1

q(λ) exp
{

− a(λ− b)c
}

,

where the function q(λ) is slowly varying compared with the

exponential function exp{−a(λ− b)c}.
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The general case

The practical importance of this relation is that the target failure

probability pf = pf (1) can be obtained from values of pf (λ) for

λ < 1.
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Our focus in this presentation is on methods for estimating pf by

Monte Carlo simulation.
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The general case

The practical importance of this relation is that the target failure

probability pf = pf (1) can be obtained from values of pf (λ) for

λ < 1.

Our focus in this presentation is on methods for estimating pf by

Monte Carlo simulation.

The observation above may then be significant, as it may be

easier to estimate the failure probabilities pf (λ) for λ < 1

accurately than the target value since they are larger and hence

require less simulations.
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The general case

The practical importance of this relation is that the target failure

probability pf = pf (1) can be obtained from values of pf (λ) for

λ < 1.

Our focus in this presentation is on methods for estimating pf by

Monte Carlo simulation.

The observation above may then be significant, as it may be

easier to estimate the failure probabilities pf (λ) for λ < 1

accurately than the target value since they are larger and hence

require less simulations.

Fitting the parametric form for pf (λ) to the estimated values

would then allow us to provide an estimate of the target value by

extrapolation.
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System reliability

The use of Monte Carlo methods for system reliability analysis has

several attractive features, the most important being that the failure

criterion is relatively easy to check almost irrespective of the

complexity of the system.
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criterion is relatively easy to check almost irrespective of the

complexity of the system.

The flip side of such methods is the amount of computational efforts

that may be involved. One of the goals of our work is to investigate to

what extent the procedure discussed in the previous section can be used

to ameliorate this situation.
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System reliability

The use of Monte Carlo methods for system reliability analysis has

several attractive features, the most important being that the failure

criterion is relatively easy to check almost irrespective of the

complexity of the system.

The flip side of such methods is the amount of computational efforts

that may be involved. One of the goals of our work is to investigate to

what extent the procedure discussed in the previous section can be used

to ameliorate this situation.

In this presentation we shall limit the discussion to series and parallel

system reliability problems. That is, let Mj = Gj(X1, . . . , Xn),

j = 1, . . . ,m, be a set of m given safety margins expressed in terms of

n basic variables. The extended class of safety margins then become

Mj(λ) = Mj − µj(1− λ), where µj = E[Mj ].
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System reliability

The modified series system reliability expressed in terms of the

failure probability can then be written as,

pf (λ) = Prob
(

m
⋃

j=1

{Mj(λ) ≤ 0}
)

,
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System reliability

The modified series system reliability expressed in terms of the

failure probability can then be written as,

pf (λ) = Prob
(

m
⋃

j=1

{Mj(λ) ≤ 0}
)

,

The failure probability for the parallel system,

pf (λ) = Prob
(

m
⋂

j=1

{Mj(λ) ≤ 0}
)

.
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System reliability

Any system can be written as a series system of parallel

subsystems. Then,

pf (λ) = Prob
(

l
⋃

j=1

⋂

i∈Cj

{Mi(λ) ≤ 0}
)

,

where each Cj is a subset of {1, . . . ,m} for j = 1, . . . , l. The Cj

denote the index sets defining the parallel subsystems.
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Monte Carlo based reliability estimation

For practical estimation of the reliability, it is assumed that,

pf (λ) ≈ q exp
{

− a(λ− b)c
}

, for λ0 ≤ λ ≤ 1 ,

for a suitable value of λ0, where q is now a constant parameter.
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Monte Carlo based reliability estimation

For practical estimation of the reliability, it is assumed that,

pf (λ) ≈ q exp
{

− a(λ− b)c
}

, for λ0 ≤ λ ≤ 1 ,

for a suitable value of λ0, where q is now a constant parameter.

Hence, there is a need to identify a suitable λ0 so that this

assumption provides a good approximation of pf (λ) for

λ ∈ [λ0, 1].

Reliability of structural systems byEnhanced Monte Carlo methods – p. 12/42



N
T

N
U

Monte Carlo based reliability estimation

For a sample of size N of the vector of basic random variables

X = (X1, . . . , Xn), let Nf (λ) denote the number of samples in the

failure domain of M(λ).
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Monte Carlo based reliability estimation

For a sample of size N of the vector of basic random variables

X = (X1, . . . , Xn), let Nf (λ) denote the number of samples in the

failure domain of M(λ).

The estimate of the failure probability is then

p̂f (λ) =
Nf (λ)

N
.
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Monte Carlo based reliability estimation

For a sample of size N of the vector of basic random variables

X = (X1, . . . , Xn), let Nf (λ) denote the number of samples in the

failure domain of M(λ).

The estimate of the failure probability is then

p̂f (λ) =
Nf (λ)

N
.

The coefficient of variation of this estimator is

CV (p̂f (λ)) =

√

1− pf (λ)

pf (λ)N
≈ 1

√

pf (λ)N
.
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Monte Carlo based reliability estimation

For a sample of size N of the vector of basic random variables

X = (X1, . . . , Xn), let Nf (λ) denote the number of samples in the

failure domain of M(λ).

The estimate of the failure probability is then

p̂f (λ) =
Nf (λ)

N
.

The coefficient of variation of this estimator is

CV (p̂f (λ)) =

√

1− pf (λ)

pf (λ)N
≈ 1

√

pf (λ)N
.

A fair approximation of the 95 % confidence interval for the value

pf (λ) can be obtained as CI0.95(λ) =
(

C−(λ) , C+(λ)
)

, where

C±(λ) = p̂f (λ)
(

1± 1.96CV (p̂f (λ))
)

.
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Monte Carlo based reliability estimation

Plotting log
∣

∣ log
(

pf (λ)/q(λ)
)
∣

∣ versus log(λ− b), should give an

almost perfectly linear tail behaviour.
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)
∣

∣ versus log(λ− b), should give an

almost perfectly linear tail behaviour.

It is now tentatively proposed to replace q(λ) by a suitable constant

value, q say, for tail values of λ.
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Monte Carlo based reliability estimation

Plotting log
∣

∣ log
(

pf (λ)/q(λ)
)
∣

∣ versus log(λ− b), should give an

almost perfectly linear tail behaviour.

It is now tentatively proposed to replace q(λ) by a suitable constant

value, q say, for tail values of λ.

Hence, we will investigate the viability of the following approximation,

pf (λ) ≈ q exp
{

− a(λ− b)c
}

, for λ0 ≤ λ ≤ 1 ,

for a suitable choice of λ0.
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Monte Carlo based reliability estimation

The optimal values of the parameters q, a, b, c is found by minimizing

the following mean square error function,

F (q, a, b, c) =

M
∑

j=1

wj

(

log p̂f (λj)− log q + a(λj − b)c
)2

,

where λ0 ≤ λ1 < . . . < λM < 1 denotes the set of λ values where the

failure probability is empirically estimated.
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The optimal values of the parameters q, a, b, c is found by minimizing

the following mean square error function,

F (q, a, b, c) =

M
∑

j=1

wj

(

log p̂f (λj)− log q + a(λj − b)c
)2

,

where λ0 ≤ λ1 < . . . < λM < 1 denotes the set of λ values where the

failure probability is empirically estimated.

wj , j = 1, . . . ,M , denote weight factors that put more emphasis on the

more reliable data points, alleviating the heteroscedasticity of the

estimation problem at hand.
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Monte Carlo based reliability estimation

The optimal values of the parameters q, a, b, c is found by minimizing

the following mean square error function,

F (q, a, b, c) =

M
∑

j=1

wj

(

log p̂f (λj)− log q + a(λj − b)c
)2

,

where λ0 ≤ λ1 < . . . < λM < 1 denotes the set of λ values where the

failure probability is empirically estimated.

wj , j = 1, . . . ,M , denote weight factors that put more emphasis on the

more reliable data points, alleviating the heteroscedasticity of the

estimation problem at hand.

We use wj =
(

logC+(λj)− logC−(λj)
)−θ

with θ = 1 or 2,

combined with a Levenberg-Marquardt least squares optimization

method.
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Monte Carlo based reliability estimation

However, with b and c fixed, the optimization problem reduces to a

standard weighted linear regression problem.
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Monte Carlo based reliability estimation

However, with b and c fixed, the optimization problem reduces to a

standard weighted linear regression problem.

That is, the optimal values of a and log q are found using closed form

weighted linear regression formulas in terms of wj , yj = log p̂f (λj)

and xj = (λj − b)c.
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Monte Carlo based reliability estimation

However, with b and c fixed, the optimization problem reduces to a

standard weighted linear regression problem.

That is, the optimal values of a and log q are found using closed form

weighted linear regression formulas in terms of wj , yj = log p̂f (λj)

and xj = (λj − b)c.

It is obtained that (x =
∑M

j=1 wjxj/
∑M

j=1 wj ,

y =
∑M

j=1wjyj/
∑M

j=1wj),

a∗(b, c) = −
∑M

j=1 wj(xj − x)(yj − y)
∑M

j=1wj(xj − x)2
,

and

log q∗(b, c) = y + a∗(b, c)x .
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Monte Carlo based reliability estimation

The Levenberg-Marquardt method may now be used on the function

F̃ (b, c) = F (q∗(b, c), a∗(b, c), b, c) to find the optimal values b∗ and c∗,

and then the corresponding a∗ and q∗ can be calculated.
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Monte Carlo based reliability estimation

The Levenberg-Marquardt method may now be used on the function

F̃ (b, c) = F (q∗(b, c), a∗(b, c), b, c) to find the optimal values b∗ and c∗,

and then the corresponding a∗ and q∗ can be calculated.

For estimation of the confidence interval for a predicted value of the

failure probability provided by the optimal curve, the empirical

confidence band is reanchored to the optimal curve.
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The Levenberg-Marquardt method may now be used on the function

F̃ (b, c) = F (q∗(b, c), a∗(b, c), b, c) to find the optimal values b∗ and c∗,

and then the corresponding a∗ and q∗ can be calculated.

For estimation of the confidence interval for a predicted value of the

failure probability provided by the optimal curve, the empirical

confidence band is reanchored to the optimal curve.

The fitted curves to the margins of the reanchored confidence band will

determine an optimized confidence interval of the predicted value. This

is obtained by constrained nonlinear optimization.
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Monte Carlo based reliability estimation

The Levenberg-Marquardt method may now be used on the function

F̃ (b, c) = F (q∗(b, c), a∗(b, c), b, c) to find the optimal values b∗ and c∗,

and then the corresponding a∗ and q∗ can be calculated.

For estimation of the confidence interval for a predicted value of the

failure probability provided by the optimal curve, the empirical

confidence band is reanchored to the optimal curve.

The fitted curves to the margins of the reanchored confidence band will

determine an optimized confidence interval of the predicted value. This

is obtained by constrained nonlinear optimization.

As a final point, it has been observed that the predicted value is not very

sensitive to the choice of λ0 provided it is chosen with some care.
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Example 1 - Ten bar truss structure

L

L

L

P

P
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Example 1 - Ten bar truss structure

The safety margin for the horizontal displacement at the upper right hand

corner of the truss structure with allowable displacement d0 can be written as,

M = G(A1, A2, A3, B, P,E) =
√

d0 −
√
D ,
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Example 1 - Ten bar truss structure

The safety margin for the horizontal displacement at the upper right hand

corner of the truss structure with allowable displacement d0 can be written as,

M = G(A1, A2, A3, B, P,E) =
√

d0 −
√
D ,

D =
BPL

A1A3E

{4
√
2A3

1(24A
2
2 +A2

3) +A3
3(7A

2
1 + 26A2

2)

DT

+ 4A1A2A3
20A2

1 + 76A1A2 + 10A2
3

DT

+ 4
√
2A1A2A

2
3

25A1 + 29A2

DT

}

where

DT = 4A2
2(8A

2
1 +A2

3) + 4
√
2A1A2A3(3A1 + 4A2) +A1A

2
3(A1 + 6A2),

and E = the modulus of elasticity.
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Example 1 - Ten bar truss structure

The safety margin for the horizontal displacement at the upper right hand

corner of the truss structure with allowable displacement d0 can be written as,

M = G(A1, A2, A3, B, P,E) =
√

d0 −
√
D ,

D =
BPL

A1A3E

{4
√
2A3

1(24A
2
2 +A2

3) +A3
3(7A

2
1 + 26A2

2)

DT

+ 4A1A2A3
20A2

1 + 76A1A2 + 10A2
3

DT

+ 4
√
2A1A2A

2
3

25A1 + 29A2

DT

}

where

DT = 4A2
2(8A

2
1 +A2

3) + 4
√
2A1A2A3(3A1 + 4A2) +A1A

2
3(A1 + 6A2),

and E = the modulus of elasticity.

The random variable B has been introduced to account for model

uncertainties. It is assumed that A1, A2, A3, B, P,E are independent basic

random variables.
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Example 1 - Ten bar truss structure

Mean Value Coef. of Var. Prob. distr.

A1 10−2 m2 0.05 Normal

A2 1.5 · 10−3 m2 0.05 Normal

A3 6.0 · 10−3 m2 0.05 Normal

B 1.0 0.10 Normal

P 2.5 · 105 N 0.10 Gumbel

E 6.9 · 104 MPa 0.05 Lognormal

Table 1: Basic variables.
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Example 1 - Ten bar truss structure

To verify the value obtained by the proposed method, the failure probability

with d0 = 0.10 m and L = 9.0 m was calculated by crude Monte Carlo

simulation with 1.7 · 109 samples.
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Example 1 - Ten bar truss structure

To verify the value obtained by the proposed method, the failure probability

with d0 = 0.10 m and L = 9.0 m was calculated by crude Monte Carlo

simulation with 1.7 · 109 samples.

This gave the result pMC
f = 3.5 · 10−6, which is accurate within about ±3%

with 95% confidence. The required computation time for this was about 20

hours on a laptop computer.
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Example 1 - Ten bar truss structure

To verify the value obtained by the proposed method, the failure probability

with d0 = 0.10 m and L = 9.0 m was calculated by crude Monte Carlo

simulation with 1.7 · 109 samples.

This gave the result pMC
f = 3.5 · 10−6, which is accurate within about ±3%

with 95% confidence. The required computation time for this was about 20

hours on a laptop computer.

Applying the proposed procedure with a sample of size 106 gave the estimated

value p̂f = 3.1 · 10−6 with a 95% confidence interval (2.4 · 10−6, 4.1 · 10−6).

The CPU time for these results were about two minutes on a standard laptop.
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Example 1 - Ten bar truss structure

Plot of log p̂f (λj): Monte Carlo (•); fitted optimal curve (– –);

reanchored empirical confidence band (· · ·); fitted confidence band

(– ·).
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Example 1 - Ten bar truss structure

Optimal double log plot of p̂f (λj)/q: Monte Carlo (•); fitted optimal

curve (– –); empirical confidence band (- -).
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Example 2 - System with equi-correlated safety

margins

In this example we shall use the following simple safety margins,

Mj = Rj − S , j = 1, . . .m ,

where Rj ∼ N(µR, σ
2
R), j = 1, . . . ,m, and S ∼ N(µS , σ

2
S), and all random

variables are assumed to be independent.
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Example 2 - System with equi-correlated safety

margins

In this example we shall use the following simple safety margins,

Mj = Rj − S , j = 1, . . .m ,

where Rj ∼ N(µR, σ
2
R), j = 1, . . . ,m, and S ∼ N(µS , σ

2
S), and all random

variables are assumed to be independent.

The correlation coefficient ρij between Mi and Mj is given as follows, which

is due to the shared loading for all safety margins,

ρij = ρ =
σ2
S

σ2
S + σ2

R

, i 6= j , i, j = 1, . . .m .
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Example 2 - System with equi-correlated safety

margins

In this example we shall use the following simple safety margins,

Mj = Rj − S , j = 1, . . .m ,

where Rj ∼ N(µR, σ
2
R), j = 1, . . . ,m, and S ∼ N(µS , σ

2
S), and all random

variables are assumed to be independent.

The correlation coefficient ρij between Mi and Mj is given as follows, which

is due to the shared loading for all safety margins,

ρij = ρ =
σ2
S

σ2
S + σ2

R

, i 6= j , i, j = 1, . . .m .

Hence, the safety margins are equi-correlated. It is clear that the extended

class of safety margins Mj(λ) = Mj − µj(1− λ), j = 1, . . . ,m remain

equi-correlated with the same correlation coefficient ρ.
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Example 2 - System with equi-correlated safety

margins

We now consider the series system with failure determined by
⋃m

j=1{Mj(λ) ≤ 0}. The failure probability can be expressed as,

pf (λ) = 1−
∫ ∞

−∞

φ(t)
[

Φ
(βλ−√

ρ t√
1− ρ

)]m

dt ,

where β denotes the common safety index of the Mj given by

β = (µR − µS)/
√

σ2
R + σ2

S .
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Example 2 - System with equi-correlated safety

margins

We now consider the series system with failure determined by
⋃m

j=1{Mj(λ) ≤ 0}. The failure probability can be expressed as,

pf (λ) = 1−
∫ ∞

−∞

φ(t)
[

Φ
(βλ−√

ρ t√
1− ρ

)]m

dt ,

where β denotes the common safety index of the Mj given by

β = (µR − µS)/
√

σ2
R + σ2

S .

For the numerical example, m = 10, σ2
R = σ2

S = 0.5, µS = 5.0,

µR = β + 5.0, and β = 4.0, 4.5, 5.0.

Reliability of structural systems byEnhanced Monte Carlo methods – p. 25/42



N
T

N
U

Example 2 - System with equi-correlated safety

margins

β Exact value Estimated value 95% conf. int. Sample size

4.0 3.0 · 10−4 3.1 · 10−4 (2.5, 3.7) · 10−4 105

4.5 3.3 · 10−5 2.8 · 10−5 (2.4, 3.4) · 10−5 105

5.0 2.8 · 10−6 2.6 · 10−6 (2.2, 3.0) · 10−6 5 · 105

Table 2: Failure probability for series system.
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Example 2 - System with equi-correlated safety

margins

We now consider the parallel system with failure given by
⋂m

j=1{Mj(λ) ≤ 0}. The failure probability is given as,

pf (λ) =

∫ ∞

−∞

φ(t)
[

Φ
(−βλ−√

ρ t√
1− ρ

)]m

dt .
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Example 2 - System with equi-correlated safety

margins

We now consider the parallel system with failure given by
⋂m

j=1{Mj(λ) ≤ 0}. The failure probability is given as,

pf (λ) =

∫ ∞

−∞

φ(t)
[

Φ
(−βλ−√

ρ t√
1− ρ

)]m

dt .

The results for β = 2.0, 2.5, 3.0 were calculated. The smaller β-values were

chosen to get a reasonable probability range for system failure.
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Example 2 - System with equi-correlated safety

margins

β Exact value Estimated value 95% conf. int. Sample size

2.0 5.7 · 10−5 4.9 · 10−5 (2.7, 7.7) · 10−5 105

2.5 3.4 · 10−6 3.3 · 10−6 (2.0, 5.2) · 10−5 5 · 105

3.0 1.4 · 10−7 1.3 · 10−7 (0.6, 2.4) · 10−7 106

Table 3: Failure probability for parallel system.
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Example 3 - Truss bridge structure

P1 P2 P3

2 L
3 L

L L L L

1

2

3

4 5

6

7

8

9

10

11

12 13
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Example 3 - Truss bridge structure

Mean Value Coef. of Var. Prob. distr.

σyj , j = 1, . . . , 13 275.8 MPa 0.15 Normal

Pj , j = 1, 2, 3 89 kN 0.15 Normal

Table 4: The 16 basic variables for Example 4.

Reliability of structural systems byEnhanced Monte Carlo methods – p. 30/42



N
T

N
U

Example 3 - Truss bridge structure

M1 = R1 − 0.9186P1 − 0.6124P2 − 0.3062P3

M2 = R2 − 0.3029P1 − 0.6058P2 − 0.3029P3

M3 = R3 − 0.5303P1 − 0.3535P2 − 0.1768P3

M4 = R4 − P1

M5 = R5 + 0.4186P1 − 0.3876P2 − 0.1938P3

M6 = R6 − 0.1835P1 − 0.3670P2 − 0.1835P3

M7 = R7 − 0.3062P1 − 0.6124P2 − 0.9186P3

M8 = R8 − 0.3029P1 − 0.6058P2 − 0.3029P3

M9 = R9 − 0.1768P1 − 0.3535P2 − 0.5303P3

M10 = R10 − P1

M11 = R11 − 0.1938P1 − 0.3876P2 + 0.4186P3

M12 = R12 − 0.5303P1 − 0.3536P2 − 0.1768P3

M13 = R13 − 0.1768P1 − 0.3536P2 − 0.5303P3
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Example 3 - Truss bridge structure

The failure probability of the system was first calculated by crude Monte

Carlo simulation with 2.24 · 109 samples. This gave the result

pMC
f = 2.7 · 10−5, which is accurate within about ±0.5% with 95%

confidence. The required computation time for this was about 17 hours on a

laptop computer.
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Example 3 - Truss bridge structure

The failure probability of the system was first calculated by crude Monte

Carlo simulation with 2.24 · 109 samples. This gave the result

pMC
f = 2.7 · 10−5, which is accurate within about ±0.5% with 95%

confidence. The required computation time for this was about 17 hours on a

laptop computer.

Applying the proposed procedure with a sample of size 105 gave the estimated

value p̂f = 2.7 · 10−5 with a 95% confidence interval (1.8 · 10−5, 3.9 · 10−5).

The CPU time for these results were about 10 seconds on a standard laptop.
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Example 3 - Truss bridge structure

Plot of log p̂f (λj): Monte Carlo (•); fitted optimal curve (– –);

reanchored empirical confidence band (· · ·); fitted confidence band

(– ·).
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Example 3 - Truss bridge structure

Optimal double log plot of p̂f (λj)/q: Monte Carlo (•); fitted optimal

curve (– –); empirical confidence band (- -).
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Example 4 - Grillage structure
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Example 4 - Grillage structure

The grillage structure is modelled as a series system with 6540 limit

state functions and a total of 4880 random variables. Each beam

element has a rectangular cross section of dimension 0.05 m times

0.12 m and a length of 0.5 m.
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Example 4 - Grillage structure

The grillage structure is modelled as a series system with 6540 limit

state functions and a total of 4880 random variables. Each beam

element has a rectangular cross section of dimension 0.05 m times

0.12 m and a length of 0.5 m.

All vertical load components are normally distributed with mean 420N

and standard deviation 126N. They are pairwise equicorrelated. The

yield stress is modelled as lognormally distributed random variables,

mean = 380 MPa, standard deviation = 19 MPa
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Example 4 - Grillage structure

The grillage structure is modelled as a series system with 6540 limit

state functions and a total of 4880 random variables. Each beam

element has a rectangular cross section of dimension 0.05 m times

0.12 m and a length of 0.5 m.

All vertical load components are normally distributed with mean 420N

and standard deviation 126N. They are pairwise equicorrelated. The

yield stress is modelled as lognormally distributed random variables,

mean = 380 MPa, standard deviation = 19 MPa

The limit state function for each node of the grillage has been

formulated as

g(X) = 1−
{

| σB

σB,cr

|+ | τV
τV,cr

|+ | τT
τT,cr

|
}

Reliability of structural systems byEnhanced Monte Carlo methods – p. 36/42



N
T

N
U

Example 4 - Grillage structure

Limit state function values for Node 2 of transverse beam elements.
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Example 4 - Grillage structure

Limit state function values for Node 2 of longitudinal beam elements.
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Example 4 - Grillage structure

Plot of the probability of failure pf versus λ for load correlation length

1.5m: Monte Carlo (•); fitted optimal curve (– –); reanchored empirical

confidence band (· · ·); fitted confidence band (– ·).
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Example 4 - Grillage structure

Plot of the probability of failure pf versus λ for load correlation length

2.0m: Monte Carlo (•); fitted optimal curve (– –); reanchored empirical

confidence band (· · ·); fitted confidence band (– ·).
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Example 4 - Grillage structure

Plot of the probability of failure pf versus λ for load correlation length

2.5m: Monte Carlo (•); fitted optimal curve (– –); reanchored empirical

confidence band (· · ·); fitted confidence band (– ·).
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Conclusions

From the examples studied, one can (tentatively) conclude that

the proposed Monte Carlo based method for system reliability

calculations appears to be accurate (enough) and robust, while it

is simple and practical to use.
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Conclusions

From the examples studied, one can (tentatively) conclude that

the proposed Monte Carlo based method for system reliability

calculations appears to be accurate (enough) and robust, while it

is simple and practical to use.

The CPU time is in all examples tractable, and it is reduced by a

factor of ≥ 100, compared to crude Monte Carlo simulations

down to the target failure probability levels.
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