Adjoint Operator Methods for Efficient Functional Reliability

A. John Arul IGCAR,India. Work done in collaboration with Prof. Kannan Iyer, IITB Mumbai

PRESENTATION OUTLINE

- Passive versus Active Systems
- The Problem of Functional Reliability
- Major steps in Functional Reliability Assessment
- Approaches for Efficiency
- Adjoint Operators
- Continuous Adjoint -Simple Application
- Automatic Differentiation
- Application Tools

Conclusion

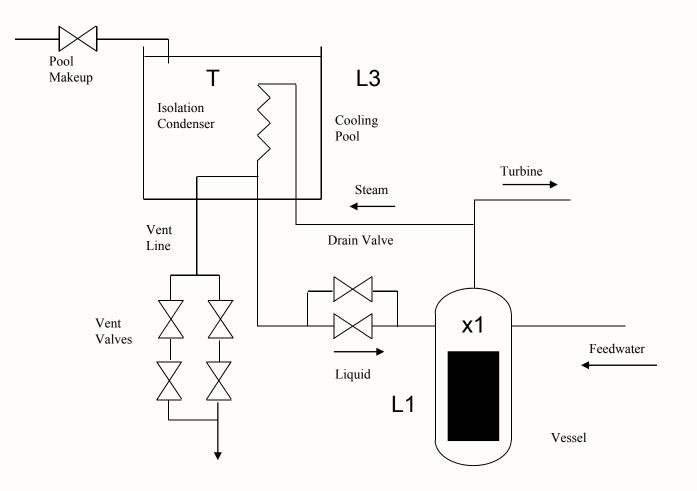
Passive System Definition

- No external energy requirement
 - No AC power requirement (Grid power, DG Power)
- No moving mechanical parts

- Like pumps, valves.

- No signals
 - Analogue or digital signal processing for sensing, control.
- Examples: Structures, Thermo-siphon based heat transport, gravity driven coolant injection.

Scheme of Isolation Condenser for a SBWR



Classification of Passive System

Category A

- No AC power, No Moving working fluid
- No Moving parts, No signals

Category B

- No AC power, Moving working fluid
- No Moving parts, No signals

Category C

- No AC power, Moving working fluid
- Moving parts, No signals

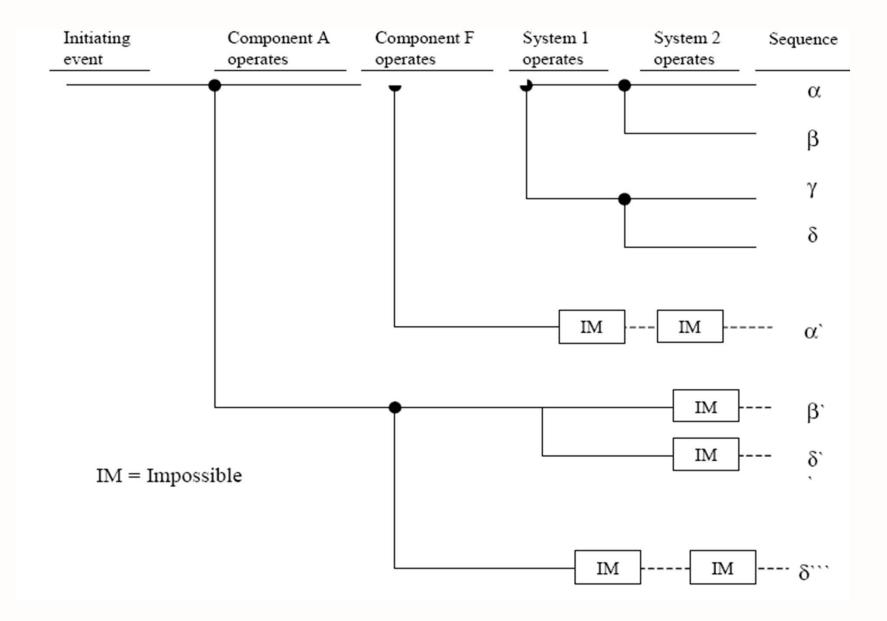
•Category D

- No AC power, Moving working fluid
- Moving parts, signals

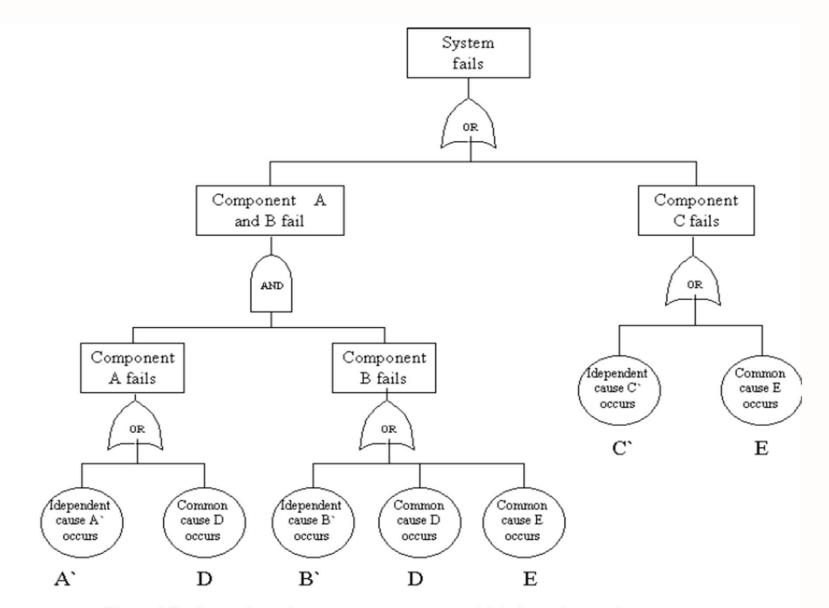
Safety System Reliability Requirement: Active/Passive

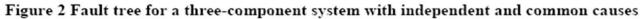
- Nuclear Reactor Heat Transport applications- Regulatory requirement for (un)reliability ~ 1E-7/de.
- Active System-Reliability:
- If pumps are essential, difficult to achieve unreliability < 1E-5 /de (1E-5 /h *10h *0.1)
- Reliability Analysis Method/Tools:
- System reliability is obtained mainly as combination of active component (pump/valves) reliability.
- Functional failure is expected to be relatively small and neglected.

Event Tree



Fault Trees





PFBR Shutdown System

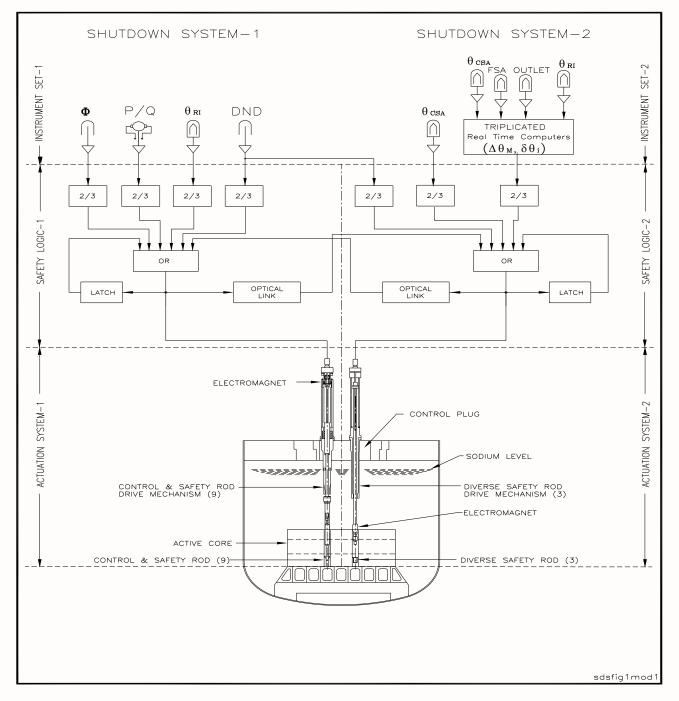
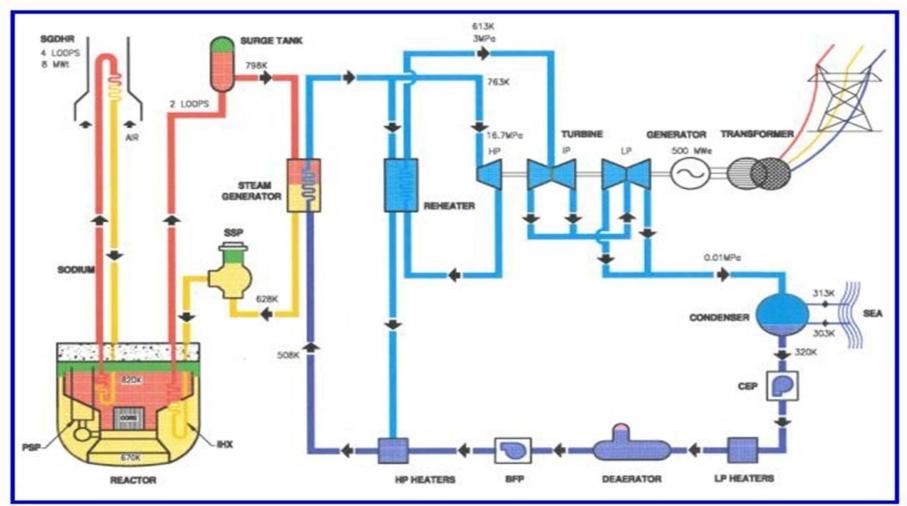


Fig. 1 SHUTDOWN SYSTEM

PFBR Schematic

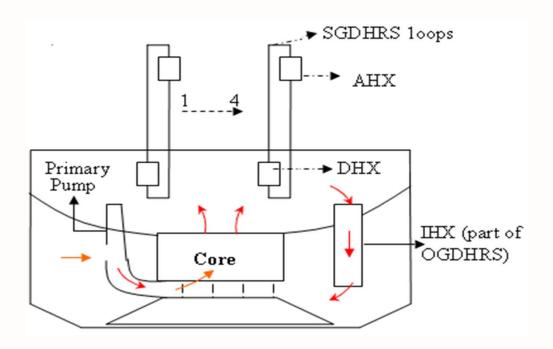


Main Heat Transport System

- Primary Sodium Circuit
- Secondary Sodium Circuit
- Spl. DHR heat exchangers with recirculation pump in SWS

- Independent DHR Loops
 - 3% of full power capacity
 - Passive operation
 - Air dampers for startup and freezing prevention

SGDHRS of PFBR



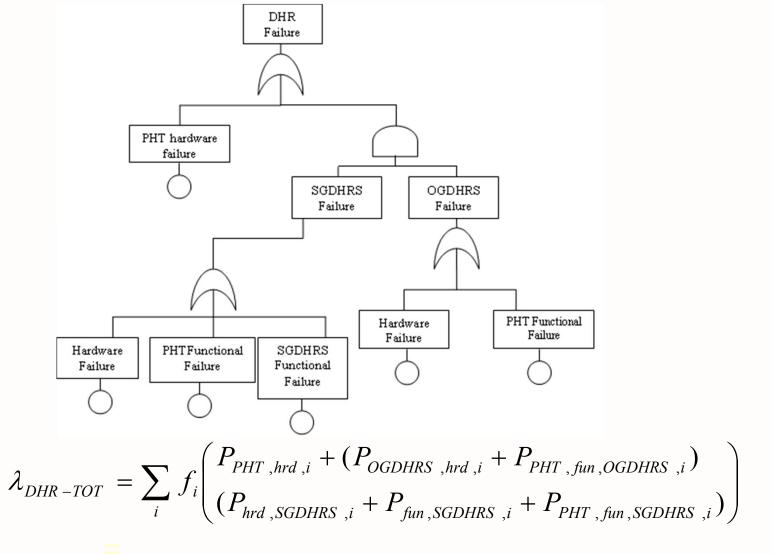
Safety Grade Decay Heat Removal System (SGDHRS) consists of 4 independent thermo-siphon loops, with Na-Na HX dipped in hot pool.

Air dampers in Na-Air Heat exchangers- active components

Primary circuit integrity required for DHR through SGDHRS

Total Failure Probability of DHRS of PFBR

Total DHRS fails if OGDHRS and SGDHRS fails or primary heat transport which is common to both fails



Passive System Reliability-Features/Methods

Thermal Hydraulic Passive System:

Natural convection driving forces are comparable to resistance

-Increase in performance uncertainty.

Passive System Reliability/Functional reliability:

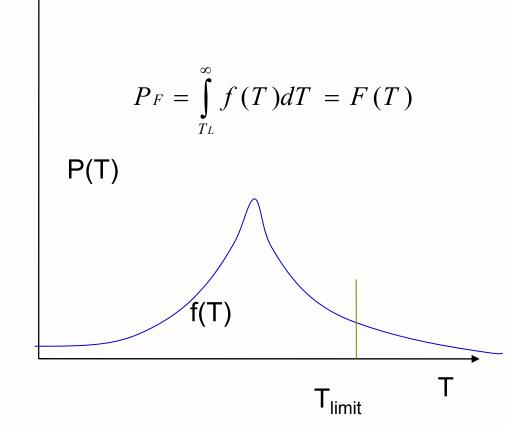
- Depends only on functionality or inherent robustness of the process and design margin.
- Since active equipment is absent, reliability of functionality is the dominant factor.
- Various causes like uncertainty in design and critical parameters, design process, environment etc needs to be accounted.
- Quantification methodology is uncertainty propagation and estimation of nominal failure probability. (as in structural reliability studies).

Passive System Reliability - Definition

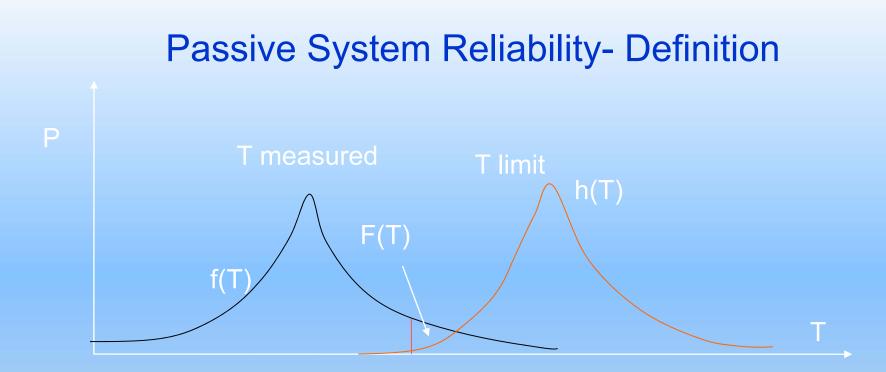
- Focused on Stress-Strength interaction model from structural reliability.
- Reliability = 1- P_F
 (1-Probability of Failure)

```
P_{F} = P [T(limit) - T(x) < 0]
```

T is a random variable with a pdf f(T)



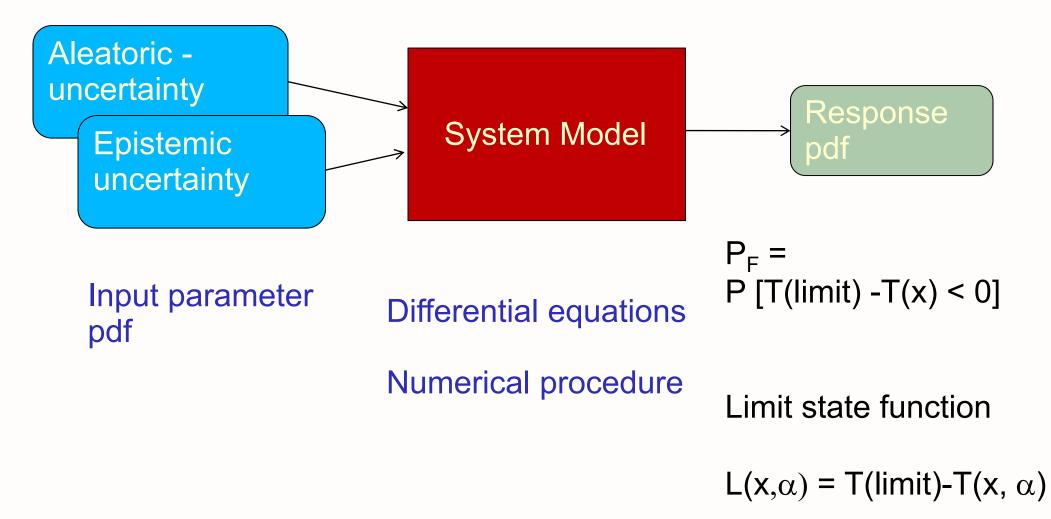
A **limit state** function can also be defined for this purpose as $L = L(T_L, T)$ $L(T_L, P(X))$, since T is calculated as a function of input data X



 T_{limit} If T_L is also a random variable with PDF, h(T)

$$\mathsf{P}_{\mathsf{F}} = \int_{-\infty}^{\infty} [h(T)dT \ F(T)]$$

Elements of Passive System Reliability Analysis



Steps in Functional Reliability

- System Analysis
- Formulate failure criteria
- Identify significant parameters
 - sensitivity analysis this step requires almost the end result
- Assign *pdf* to parameters
- Propagate uncertainty
 - large number of calculations how to do it faster ?
- Calculate exceedence probability/reliability

Uncertainty

- Input parameter uncertainty may have,
 - Aleatoric uncertainty inherent random variability
 - Epistemic uncertainty from lack of knowledge
- Can we mix the two?
- Uncertainty is uncertainty
- Aleatoric pdf is reasonably known from measurement.
- Epistemic a pdf is judged from expert opinion which could become a delta function
- It could only be a convenient classification

Efficient Propagation of Uncertainty

$$P_F = \int I(x_1, x_2, x_3...x_n) f(x_1, x_2, x_3...x_n) dx$$

> f(x) is *pdf.* I(x) is indicator function,

> I(x) = 1 if the point $x_1, ..., x_n$, is a failure point, else 0.

> Computation Time = No. of samples * Time for I(x).

- Direct Monte-Carlo Method: Large fraction of evaluation of I(x) lead to 0.
- > Variance Reduction: More samples in region, I(x)=1.
- Approximations to I(x), combined with Variance reduction.

Number Calculations for Reliability Evaluation

- Direct MCS to estimate a Probability of Failure p with fractional error f, the number of calculations
 - $N \sim 1/(p * f^2)$; importance sampling 1/10 to 1/20 reduction;
- To calculate one linear response surface by forward method, number of calculations for n_i parameters

$N \sim n_i^*$ Time(code)

- Adjoint methods require N ~ n_o * Time(code)
- Time (code)= O(M²), M problem size
- Adjoint method is useful when n_o << n_i
- Combination of efficient approximations with importance sampling appears promising.

Other Strategies for Uncertainty Propagation

- Polynomial chaos methods (N.Wiener)
 - Expansion of input *pdf* in orthonormal basis functions such as Legendre (uniform), Laguerre (exponential), Hermite functions (Gaussian), substitute in DE to get a new set of DE and solve.
- Probabilistic formulation of the differential equations.
- Subset simulations (Au and Beck)
- Line Sampling (Zio et al)

The Role of Adjoint Operators

- Fast approximations to system model to compute limit state functions L = R-S, Combined with variance reduction techniques.
- > One such possibility is Taylor series approximation to L(x) $L'(x) = L(x_0) + \nabla L \cdot dx$
- The components of \(\nabla L(x)\), can be obtained efficiently by Adjoint methods as follows.

Adjoint Operators – the Method & Gain Definition: Formal Adjoint

In a linear vector space with inner product,

L* is an adjoint of L, If for all vectors u, v

 $\mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{u} = (\mathbf{L}^* \mathbf{v})^{\mathsf{T}} \mathbf{u}$

Suppose vector 'u' satisfies L u = f; for given L and f. We want to evaluate in general some function of u, that is the quantity $g^T u$.

Find 'v' such that, $\mathbf{L}^* \mathbf{v} = \mathbf{g}$. Then from adjoint definition, $\mathbf{g}^T \mathbf{u} = \mathbf{v}^T \mathbf{L} \mathbf{u} = \mathbf{v}^T \mathbf{f}$.

That is $\mathbf{g}^{\mathsf{T}} \mathbf{u} = \mathbf{v}^{\mathsf{T}} \mathbf{f}$

The Advantage

The equivalence

$$\mathbf{g}^{\mathsf{T}} \mathbf{u} = \mathbf{v}^{\mathsf{T}} \mathbf{f}$$

has the following implication.

If Lu = f, has to be solved for many different 'f' with fixed g, then,

The adjoint problem $L^* v = g$ is solved once and the inner product $v^T f$ could be calculated without solving Lu = f, repeatedly.

The advantage

- The number of operations required to repeatedly solve, (L⁻¹ is known),
- Lu = f is $O(M^2)$
- With adjoint method only vector product
 v^Tf is required, which is O(M)

Adjoint of Simple Differential Operators

Consider the following linear first order ODE,

 $\frac{dn}{dt} = f(t)$ (1) The adjoint **L*** of a differential operator L is defined by

$$\int_{t_1}^{t_2} \varphi(t) [L \quad n(t)] \quad dt = \int_{t_1}^{t_2} [L^* \varphi(t)] \quad n(t) dt$$

Multiply equation (1) by $\boldsymbol{\phi}$ and integrate by parts

$$\int_{t_{1}}^{t_{2}} \varphi \frac{dn}{dt} dt = \varphi(t_{2})n(t_{2}) - \varphi(t_{1})n(t_{1}) - \int_{t_{1}}^{t_{2}} n \frac{d\varphi}{dt} dt$$

Therefore formal adjoint $\frac{d}{dt}$ is $-\frac{d}{dt}$ operator for $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$

Inorder to satisfy adjoint definition, we require that the boundary terms satisfy the following equation.

 $\varphi(t_2)n(t_2) - \varphi(t_1)n(t_1) = 0$

Adjoint of simple differential operators

Let the initial condition for solving (1) be, $n(0) = \alpha$. $n(t) = \int f(t)dt + c$ If f(t) is constant f, solution is

$$n(t) = f \quad t + \alpha$$

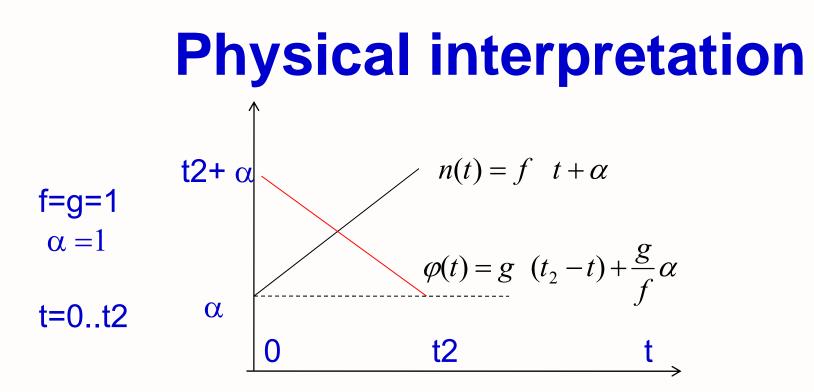
The solution of the adjoint equation is

$$-\frac{d\varphi}{dt} = g(t) \qquad \qquad \varphi(t) = -g \quad t + c$$

$$(-g \ t_2 + c)(f \ t_2 + \alpha) = c \alpha \qquad g \ t_2 \alpha - f \ t_2 c + g f \ t_2^2 = 0 \qquad c = \frac{g}{f} \alpha + g t_2$$
$$\varphi(t) = g \ (t_2 - t) + \frac{g}{f} \alpha$$

It can be easily verified that a weighted integral of direct function is equal to the integral of 'f' times the adjoint function. $(\mathbf{q}^{\mathsf{T}}\mathbf{u} = \mathbf{v}^{\mathsf{T}}\mathbf{f})$

$$\int_{0}^{t} n(t')g \, dt' = \int_{0}^{t} \varphi(t')f \, dt' = g \, \alpha \, t + gf \frac{t^{2}}{2}$$



Adjoint calculation in this case is time reversal.

Few physical applications:

particle diffusion:

Forward : given a particle source find particle distribution .

Adjoint : given that a detector is located at some point find source importance distribution.

Structures:

Forward: Load specified, displacement field is calculated. Adjoint : For displacement at specified location find the load

Adjoint Operator – Application to 1-D loop

The equations for fluid mass flow rate 'W'

$$\frac{dW}{dt} = \frac{gA}{L} \oint \rho(T) \cos \theta \, dz - f(W) \frac{W^2}{2\rho D^2}$$

$$\frac{dW}{dt} + B \cdot W^{2-b} = C \int T \cos \theta \, dx \qquad B = \frac{a\mu^b A^{b-1}}{2D^{1+b}\rho_0} \quad C = \frac{-A}{L} g\beta\rho_0$$
heater
Forward sensitivity equations:

$$\frac{d}{d\alpha}\frac{dW}{dt} + \frac{dB}{d\alpha}W^{2-b} + B.\frac{dW^{(2-b)}}{d\alpha} = \frac{dC}{d\alpha}\int T\cos\theta dx + C\int\frac{dT}{d\alpha}\cos\theta dx$$

$$\frac{dS_w}{dt} + B(2-b)W^{2-b-1}S_w - C\int S_T \cos\theta dx = \frac{dC}{d\alpha}\int T\cos\theta dx + \frac{dB}{d\alpha}W^{2-b}$$

This eq. has the form $LS_w = f_\alpha$

IISC-05-2011

29

Adjoint Flow Equations

$$\frac{dS_w}{dt} + B(2-b)W^{2-b-1}S_w - C\int S_T \cos\theta dx = \frac{dC}{d\alpha}\int T\cos\theta dx + \frac{dB}{d\alpha}W^{2-b}$$

Multiplying forward sensitivity equations for the mass flow rate by Z_W (and temperature sensitivity equation by Z_T) and integrating we get,

$$\int_{0}^{\tau} Z_{w} \frac{dS_{w}}{dt} dt + \int_{0}^{\tau} Z_{w} B(2-b) W^{(1-b)} S_{w} dt - \int_{0}^{\tau} Z_{w} E \int_{0}^{L} S_{T} \cos\theta dx dt = \int Z_{w} F_{w} dt$$

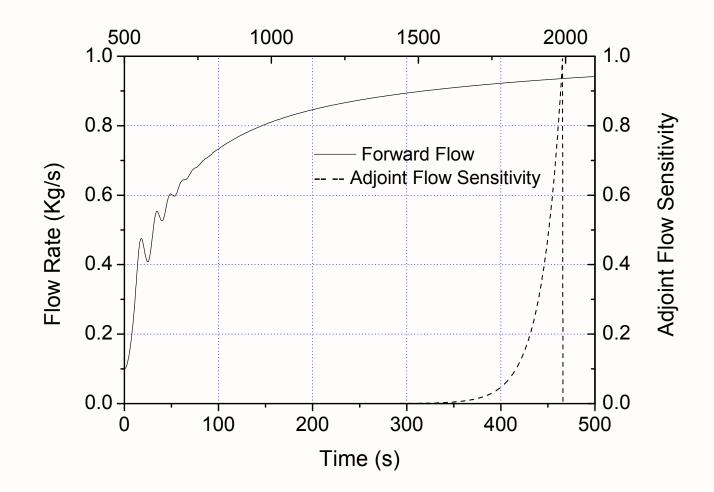
 F_W represents the source terms in the forward sensitivity equation. The response function gT u for flow sensitivity is chosen as, $\int g_w(t)S_w(t)dt$

Since
$$\int_{0}^{\tau} S_{W} g_{W} dt = \int_{0}^{\tau} Z_{W} F_{W} dt$$

Integrating by parts and rearranging in the following form,

$$-\frac{dZ_W}{dt} + B(2-b)W^{(1-b)}Z_W + \frac{1}{A\rho_0}\int_0^L \frac{\partial T}{\partial x}Z_T dx = g_W(t)$$

Adjoint Function Flow Sensitivity Zw



Sensitivity Results ($\Delta P / \Delta \alpha$) – Linear Approx

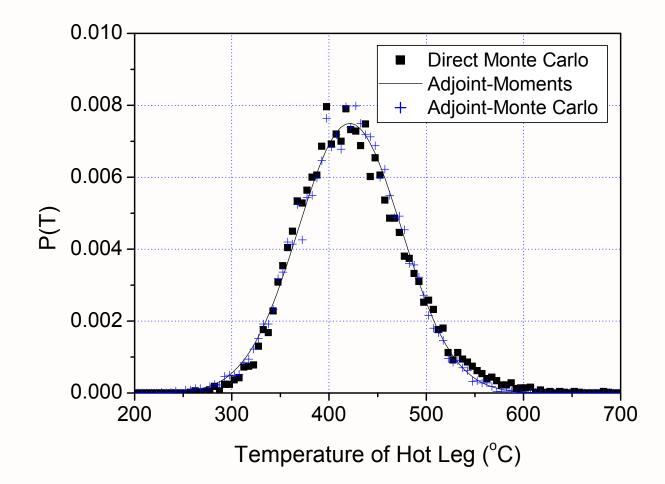
If sensitivity is required at a particular point x' in the loop at time t', then we

require	Parameter	Sensitivity on W		Sensitivity on T		Std
··		Finite Difference	Adjoint	Recalculation	Adjoint	Dev.
$S_W(t') = \frac{dW(t')}{d\alpha}$	β	*(2128) 2103.7	2129.7	-8309.9	-8661.1	0.05
$S_T(x',t') = \frac{dT(x',t')}{d\alpha}$	a	-0.00753	-0.00782	0.031242	0.031765	0.05
	μ	-1506.9	-1563.2	6248.4	6352.9	0.05
	D	51.127	50.093	-9353.2	-9799.7	0.01
	ρ	0.00113	0.001135	-0.01375	-0.01294	0.05
	q	4.94E-05	5.00E-05	0.037886	0.037887	0.1
	T ₀	-4.40E-06	-4.4E-06	0.99455	0.99455	0.1
	U	5.66E-06	6.46E-06	-0.35265	-0.36922	0.1

Finite difference: $\Delta P/\Delta X \approx P(X + \Delta X) - P(X) / \Delta X$,

* by direct differentiation of steady state expression. (I=7 m, D= 0.04 m) Mean temperature of the hot leg = 421.5 °C. Standard deviation = 53.2 °C IISC-05-2011

Probability density function of hot leg temperature at a given time by three different methods



Adjoint Operator Methods -variants

Differential Eq \rightarrow Finite Difference \rightarrow Numerical program

- Continuous Approach- Discretization of the Adjoint equation.
- Fully Discrete Method Adjoint of the Discretized equation.
- Automatic differentiation transformation implemented on the program code.

Automatic Differentiation (AD) Basics

Program P, Computing Y=P(X)

Sensitivity by divided difference: $\Delta P/\Delta X \approx P(X + \Delta X)-P(X) / \Delta X$,

Truncation Error $O(\Delta x)$.

N+1 program runs required if X is a vector of N parameters.

Automatic Differentiation: Forward (and reverse) derivatives of a program by source code transformation.

Forward AD: Each line of program code replaced by differentiated statement – forward differentiated code

Reverse AD: Starting from the End statement, corresponding to each derivative statement, adjoint statement is added to code.

Reverse program yields derivatives of a response parameter, for any number of input parameters in one run.

T (adj code) > T (forward code), but < N T(forward code).

Difficulty: Required to store program state data of the forward run

Adjoint Code

If P, at some time executes the instruction on variables a, b, c, and array T: a = $b^{T}(k) + c$ statement

Differentiated program executes additional operations on **differentials** da, db, dc, and array dT(k),

 $da = db^{T}(k) + b^{d}T(k) + dc$ differentiated statement

This can be written in matrix form as,

$$\begin{bmatrix} da \\ db \\ dc \\ dT \end{bmatrix} = \begin{bmatrix} 0 & T(k) & 1 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} da \\ db \\ dc \\ dT \end{bmatrix}$$

Adjoint Code

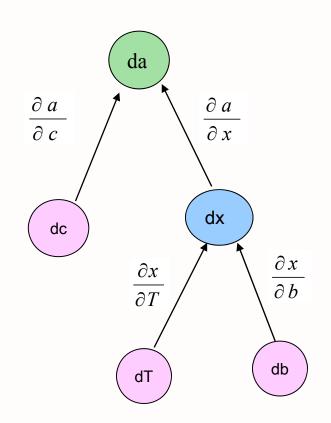
The adjoint of,

$$\begin{bmatrix} da \\ db \\ dc \\ dT \end{bmatrix} = \begin{bmatrix} 0 & T(k) & 1 & b \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} da \\ db \\ dc \\ dT \end{bmatrix} \text{ is } \begin{bmatrix} ada \\ adb \\ adc \\ adT \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ T(k) & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ b & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ada \\ adb \\ adc \\ adT \end{bmatrix}$$
$$a = b^{*}T(k) + c \qquad \leftarrow \text{ statement} \\ da = db^{*}T(k) + b^{*}dT(k) + dc \leftarrow \text{ differentiated statement}$$

Adjoint statements are written as, $adb = adb + T(k)^* ada \quad \leftarrow adjoint statements$ $adT(k) = adT(k) + b^* ada$ adc = adc+ adaada = 0

Flow Graph-Forward Differentiation

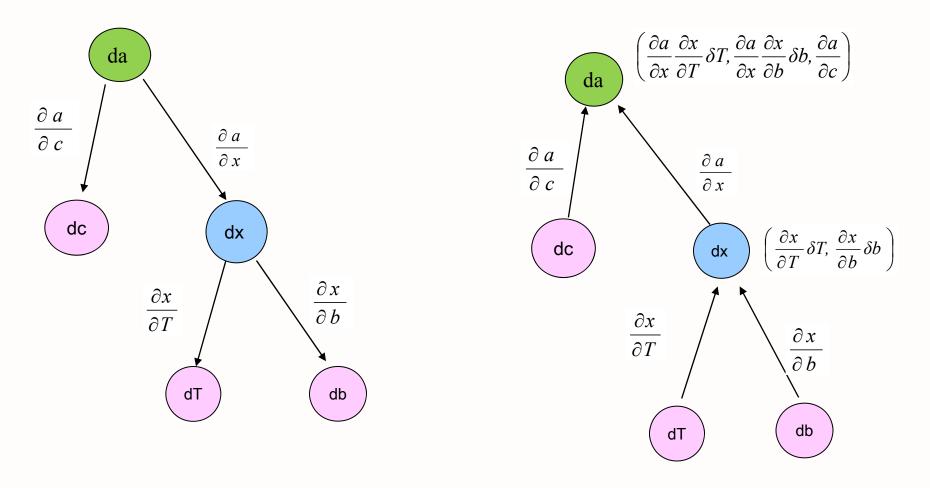
Let, x=b*T(k) a = x+ c statements



 $dx = db^{T}(k)+b^{d}T(k)$ da = dx + dc diff statements

> da/dT; dc=0,dT=1,db=0 da/db; dc=0,dT=0,db=1 da/dc; dc=1,dT=0,db=0

Flow Graph for Adjoint Differentiation



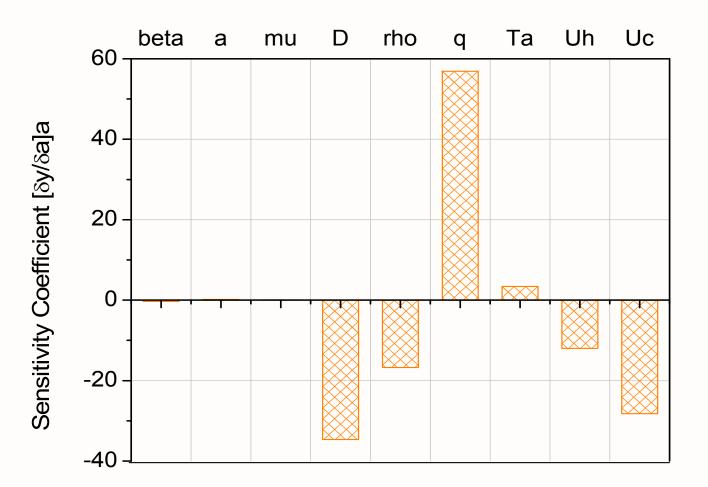
Reverse flow

Accumulated/reversible flow

Results from Differentiated Code

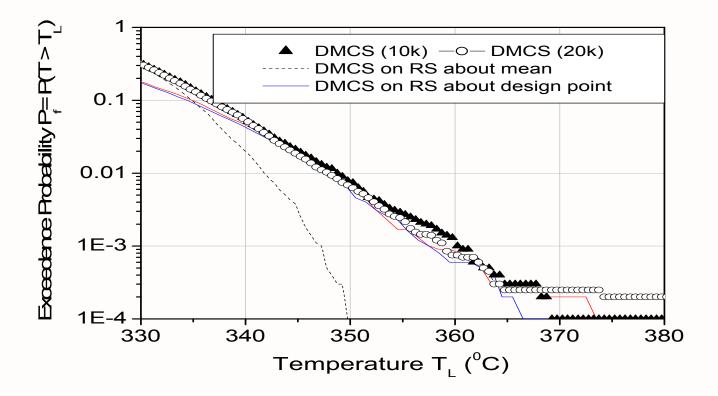
	Sensitivity Coefficients (dT/da)				
Parameter			Reverse Differentiation		
	Finite Difference	Forward Differentiation	Non- Normalised	Normalised	
β	-1350.57	-1305.23	-1324.4	-0.31124	
a	0.19531	0.18248	0.18331	0.18331	
μ	162.125	142.985	143.21	0.04583	
D	-690.613	-687.656	-692.94	-34.647	
ρ	-0.01886	-0.01868	-0.01902	-16.735	
Q	0.00114	0.00114	0.00114	56.876	
Та	0.11241	0.11294	0.11294	3.3881	
Uh	-0.05631	-0.05621	-0.00172	-12.007	
Uc			-0.05637	-28.185	
Time (s) Intel 1.8 GHz Core 2 Duo	49.5 s	8 x 5.3 s	9.47 s	-	

Normalized Sensitivity Coefficients



Parameter

Probability Distribution for Temp to Exceed 350° C – Different Methods



Probability distribution function for the failure criteria of 350 °C, with operating point response surface MCS, design point response surface MCS and DMCS.

Tools and Methods for Automatic Differentiation

- Existing Tools
 - TAPENADE
 - OpenAD
 - ADIC/ADIFOR
- AD Tool development
 - Lex /Flex (lexical scanner generator)
 - Yacc/Bison (parser generator)
 - Gentle (compiler generator)
 - Development work on a AD tool is in progress*

Conclusion

Demonstration of adjoint operator methods (AD) for,

- Very fast sensitivity analysis and parameter ranking, in time independent of no. of input parameters.
- Speeding up of Passive TH system reliability analysis.
- Efficient Best Estimate Plus Uncertainty Analysis
- Alternate Importance sampling MCS (utilizing approx prediction of failure region) promising for complex/arbitrary failure regions is being explored.

REFERENCES

- Michael b. Giles and Niles A. Pierce, An Introduction to the Adjoint Approach to Design, *Flow, Turbulence and Combustion* 65: 393–415, 2000, *Kluwer Academic Publishers.*
- Yang Cao, Shengtai Ii, Linda petzold, and Radu Serban, Adjoint Sensitivity Analysis for Differential-algebraic equations: the adjoint DAE system and its numerical solution, Siam j. Sci. Comput., Vol. 24, no. 3, pp. 1076–1089, 2003.
- Compiler Construction Principles and Practice, Kenneth C. Louden, CENGAGE Indian reprint, 2008.
- R. Giering and T. Kaminski, Receipes for Adjoint Code construction. Max-Plank institute for meteorology.

Thank you

END OF PRESENTATION

Temperature Sensitivity

$$\frac{\partial T}{\partial t} + \frac{W}{A\rho} \frac{\partial T}{\partial x} = \frac{4q(x)}{D\rho C_{p}} - \frac{4U(x)}{D\rho C_{p}} (T - T_{0})$$

$$\frac{\partial S_{T}}{\partial t} + \frac{1}{A\rho_{0}} \frac{\partial T}{\partial x} S_{w} + \frac{w}{A\rho_{0}} \frac{\partial S_{T}}{\partial x} + C_{2}US_{T} = \frac{\partial}{\partial \alpha} \left(\frac{w}{A\rho_{0}}\right) \frac{\partial T}{\partial x} + \frac{d}{d\alpha} (C_{2}U)T + \frac{d}{dx} [C_{1}q(x) + C_{3}V(x)T_{0}]$$

$$\frac{\partial}{\partial t} \frac{\partial T}{\partial \alpha} + \frac{\partial}{\partial \alpha} \left(\frac{w}{A\rho_{0}}\right) \frac{\partial T}{\partial x} + \frac{w}{A\rho_{0}} \frac{\partial}{\partial \alpha} \frac{\partial T}{\partial x} + T \frac{\partial}{\partial x} (C_{2}U(x)) + C_{2}U(x) \frac{\partial T}{\partial \alpha} = \frac{d}{d\alpha} (C_{1}q(x) + C_{3}U(x)T_{0})$$

The response function gT u for flow sensitivity is chosen as,

 $\int g_w(t)S_w(t)dt$ In this case, $g_w(t)$ is taken as delta function.

Adjoint Sensitivity Equations

Multiplying forward sensitivity equations for the mass flow rate by Z_W and temperature sensitivity equation by Z_T and integrating we get,

$$\int_{0}^{\tau} Z_{w} \frac{dS_{w}}{dt} dt + \int_{0}^{\tau} Z_{w} B(2-b) W^{(1-b)} S_{w} dt - \int_{0}^{\tau} Z_{w} E \int_{0}^{L} S_{T} \cos\theta dx dt = \int Z_{w} F_{w} dt$$

$$\int_{0}^{L} \int_{0}^{\tau} Z_{T} \frac{\partial S_{T}}{\partial t} dt dx + \int_{0}^{L} \int_{0}^{\tau} Z_{T} \frac{W}{A\rho_{0}} \frac{\partial S_{T}}{\partial x} dt dx + \int_{0}^{L} \int_{0}^{\tau} Z_{T} CUS_{T} dt dx + \int_{0}^{L} \int_{0}^{\tau} Z_{T} \frac{1}{A\rho_{0}} \frac{\partial T}{\partial x} S_{W} dt dx = \int_{0}^{L} \int_{0}^{\tau} Z_{T} F_{T} dt dx$$

With F_T and F_W representing the source terms in the forward sensitivity equations.

$$\int_{0}^{\tau} S_{W} g_{W} dt + \int_{0}^{L} \int_{0}^{\tau} S_{T} g_{T} dt dx = \int_{0}^{\tau} Z_{W} F_{W} dt + \int_{0}^{L} \int_{0}^{\tau} Z_{T} F_{T} dt dx$$

Integrating by parts and rearranging in the following form,

IISC-05-2011

Adjoint Sensitivity Equations

The following equations are obtained for g_w and g_T ,

$$-\frac{dZ_{W}}{dt} + B(2-b)W^{(1-b)}Z_{W} + \frac{1}{A\rho_{0}}\int_{0}^{L}\frac{\partial T}{\partial x}Z_{T}dx = g_{W}(t)$$

and
$$\frac{\partial Z}{\partial t} = W_{0}\frac{\partial Z}{\partial t}$$

$$-\frac{\partial Z_T}{\partial t} - \frac{W}{A\rho_0} \frac{\partial Z_T}{\partial x} + EUZ_T - C\cos\theta \quad Z_W = g_T(x,t)$$

The identity $\mathbf{gT} \mathbf{u} = \mathbf{vT} \mathbf{f}$ is,

$$\int_{0}^{\tau} S_{W} g_{W} dt + \int_{0}^{L} \int_{0}^{\tau} S_{T} g_{T} dt dx = \int_{0}^{\tau} Z_{W} F_{W} dt + \int_{0}^{L} \int_{0}^{\tau} Z_{T} F_{T} dt dx$$

The sensitivity expressions on LHS are evaluated from Z_W and Z_T in the RHS. This results in computational cost reduction, when the number of sensitivity variables are many compared to the out put response variable.

IISC-05-2011

Comparison of Computational Efficiency for Different methods

Method	Number of simulations	$P_{f}(T > T_{L} = 340)$	$P_{f}(T>T_{L} = 350)$	$\frac{\sigma(\mathrm{P_f})}{E(\mathrm{P_f})}\sqrt{\mathrm{N}}$
DMCS	20000	0.056	6.65E-3	12.72
RS-MC-MCS-N	700-1000	-	7.15E-3	4.6
RS-MCS-N	1000	-	7.35E-3	4.7
RS-MCS-HPN	1300	-	6.60E-3*	2.8
RS- MC-MCS- HPN	700,1000	-	6.28E-3,6.62E- 3*	3.3-3.12

Importance Sampling Markov Chain MCS

- Importance sampling of failure region to reduce variance
- Locate failure region with the help of Linear approximations to the program code iteratively.
- Use Metropolis algorithm for generating samples.

Most probable operating point IISC-05-2011 **Parameter space**

Design point

Failure region

Markov Chain MCS

Markov – Chain Monte Carlo for generating samples

Easy to implement and efficient.

Possibility to utilize gradient information for better convergence.

Uses Markovian property to draw set of samples $\{x_k\}$ from target pdf, q(x).

The Metropolis algorithm

Select initial parameter vector \mathbf{x}_0 .

Draw trial step from a symmetric pdf, i.e., $t(\Delta \mathbf{x}) = t(-\Delta \mathbf{x})$

Iterate as follows: at iteration number k

create trial position $\mathbf{x}' = \mathbf{x}_k + \Delta \mathbf{x}$, $\Delta \mathbf{x}$ randomly chosen from $t(\Delta \mathbf{x})$ calculate ratio $r = \min \{ 1, q(\mathbf{x}')/q(\mathbf{x}_k) \}$ and for a random number U if (U ≤ 1), set $\mathbf{x}_{k+1} = \mathbf{x}'$ else $\mathbf{x}_{k+1} = \mathbf{x}_k$