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Abstract: The predictability of a chaotic series is limited to a few future time steps due to its sensitivity 
to initial conditions and the exponential divergence of the trajectories. Over the years, streamflow has 
been considered as a stochastic system in many approaches. In this study, the chaotic nature of daily 
streamflow is investigated using autocorrelation function, Fourier spectrum, correlation dimension 
method (Grassberger-Procaccia algorithm) and false nearest neighbor method. Embedding 
dimensions of 6-7 obtained indicates the possible presence of low-dimensional chaotic behavior. The 
predictability of the system is estimated by calculating the system’s Lyapunov exponent. A positive 
maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable with a 
maximum predictability of only 6 days. These results give a positive indication towards considering 
streamflow as a low dimensional chaotic system than as a stochastic system. 
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1. INTRODUCTION 

The development of various climate models that numerically integrate an adequate set of 
mathematical equations of physical laws governing the climatic processes marked a major 
breakthrough in the routine weather prediction. The mathematical equations in these climate models 
form a nonlinear dynamical system in which an infinitesimally small uncertainty in the initial conditions 
will grow exponentially even under a perfect model, leading to a chaotic behavior (Smith et al, 1998). 
Such sensitivity of any deterministic system to a slight change in the initial conditions leads to a vast 
change in the final solution and is often known as “butterfly effect” in the field of weather forecasting 
(Lorenz, 1972). Hence, earth’s weather can be treated as a chaotic system with a finite limit in the 
predictability, arising mainly due to the incompleteness of initial conditions. The exponential growth 
with time of an infinitesimal initial uncertainty 0∂  is given by the highest Lyapunov exponent λ  (Wolf 

et al., 1985; Rosenstein et al., 1993). Hence, the separation or uncertainty after tΔ  time steps ahead 
is given as 0

t
t eλΔΔ∂ ≅ ∂ . The predictability of a chaotic system is therefore limited (i) due to the 

indefiniteness in the initial conditions (given a perfect model) and also (ii) due to the imperfection of 
the model.   
 
Modeling of many weather phenomena have been done so far employing the concept of stochastic 
systems. However, a large number of studies employing the science of chaos to model and predict 
various hydrological phenomena have emerged only in the past decade (Elshorbagy et al., 2002; 
Islam and Sivakumar, 2002; Jayawardena and Lai, 1994; Porporato and Ridolfi, 1996, 1997; Puente 
and Obregon, 1996; Rodriguez-Iturbe et al., 1989, Liu et al., 1998; Sangoyomi et al., 1996; Sivakumar 
et al., 1999; Sivakumar, 2001; Sivakumar et al., 2001; Shang et al., 2009; Wang and Gan, 1998). Most 
of these studies dealt with scalar time series data of various hydrological phenomena like rainfall, 
runoff, sediment transport, lake volume etc. In these cases, since neither the mathematical relations 
nor the influencing variables are known, the state space in which the variable is lying is reconstructed 
from the time series itself using phase space reconstruction method by Takens (1981). The phase 
space reconstruction provides a simplified, multi-dimensional representation of a single-dimensional 
nonlinear time series. According to this approach, given the embedding dimension m and the time 
delay τ, for a scalar time series Xi where i = 1, 2,…, N, the dynamics can be fully embedded in m-
dimensional phase space represented by the vector, 
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( )( )2 1, ,..., (1)j j j j j mY X X X Xτ τ τ+ + + −=  

Now, the dynamics can be interpreted in the form of an m-dimensional map fT such that 

( )j T T jY f Y+ =  where Yj and Yj+T are vectors of dimension m, Yj being the state at current time j and 

Yj+T being the state at future time j+T. The approximation of fT can be done using either a global or a 
local nonlinear model. 
 
The outcomes of these studies affirm the existence of low-dimensional chaos, thus indicating the 
possibility of only short-term predictions. Better predictions can be obtained using the chaotic 
approach since it takes into account the dynamics of the irregular hydrological phenomena from a 
chaotic deterministic view, thereby reducing the model uncertainty. Also, the dynamic approach 
employing chaotic theory outperforms the traditional stochastic approach in prediction (Jayawardena 
and Gurung, 2000). Most of these studies rely only on the low correlation dimension as a measure of 
the chaotic nature of the time series and as an estimate of embedding dimension. Osborne and 
Provenzale (1989) claimed that a low correlation dimension can also be observed for a linear 
stochastic process. Hence, it is advised to assess the chaotic nature and to determine the embedding 
dimension and delay time by employing a variety of methods (Islam and Sivakumar, 2002; Dhanya 
and Kumar, 2010). Since different methods will give slightly different embedding dimensions and delay 
times for a single series, one should opt for an ensemble of predictions with a set of these parameters 
in order to capture the uncertainty in parameter estimation (Dhanya and Kumar, 2010). 
 
The aim of this paper is to analyse the chaotic behaviour and predictability of a streamflow series 
employing various techniques. Auto-correlation method is used for preliminary investigation to identify 
chaos and also to determine the delay time for the phase space reconstruction. Optimum embedding 
dimension is determined using correlation dimension and false nearest neighbor algorithms. 
 
 
2.  PREDICTABILITY AND CHAOTIC NATURE  
A variety of techniques have emerged for the identification of chaos which include correlation 
dimension method (Grassberger and Procaccia, 1983a), false nearest neighbor algorithm (Kennel et 
al., 1992), nonlinear prediction method (Farmer and Sidorowich, 1987), Lyapunov exponent method 
(Kantz, 1994), Kolmogorov entropy (Grassberger and Procaccia, 1983b), surrogate data method 
(Theiler et al., 1992) etc. In this study, correlation dimension, false nearest neighbor method and 
Lyapunov exponent are employed to analyze the chaotic nature of the time series.  
 
2.1. Lyapunov Exponent 
One of the basic characteristics of a chaotic system is the unpredictability due to the sensitive 
dependence on initial conditions. The divergence between the trajectories emerging from very close 
initial conditions will grow exponentially, hence making the system difficult to predict even after a few 
time steps. Lyapunov exponent gives the averaged information of divergence of infinitesimally close 
trajectories and thus the unpredictability of the system. Let st1 and st2 be two points in two trajectories 
in state space such that the distance between them is 1 2 0 1t ts s− = ∂ << . After tΔ time steps 

ahead, the distance 1 2 , 1, 1t t t t t ts s tΔ +Δ +Δ Δ∂ ≅ − ∂ << Δ >>  follows an exponential relation with 

initial separation 0∂ , i.e., 0
t

t eλΔΔ∂ ≅ ∂ , where λ  is the Lyapunov exponent (Kantz, 1994). Since the 
rate of separation is different for various orientations of initial separation vector, the total number of 
Lyapunov exponents is equal to the number of dimensions of the phase space defined, i.e., a 
spectrum of exponents will be available. Among them, the highest (global) Lyapunov exponent need 
only be considered, as it determines the total predictability of the system.  
 
Many algorithms have been developed to calculate the maximal Lyapunov exponent (Wolf et al., 1985; 
Rosenstein et al., 1993; Kantz, 1994). The exponential divergence is examined here using algorithm 
introduced by Rosenstein et al. (1993). For calculating the maximum Lyapunov exponent, one has to 
compute 

1428



 

( ) ( ) ( )
0

00
1 U

1 1ln (2)
Uo t t

N

t t t t
t s st

S t s s
N s

+Δ +Δ
= ∈

⎛ ⎞
⎜ ⎟Δ = −
⎜ ⎟
⎝ ⎠

∑ ∑  

Where 
0t
s are reference points or embedding vectors, ( )0U ts  is the neighborhood of 

0t
s with diameter 

ξ. For a reasonable range of ξ and for all embedding dimensions m which is larger than some 
minimum dimension m0, if ( )S tΔ exhibits a linear increase, then its slope can be taken as an estimate 

of the maximal Lyapunov exponent λ .  
 
The exponential divergence of the nearby trajectories and hence an unstable orbit (chaos) is indicated 
by a positive λ . Negative Lyapunov exponents are characteristic of dissipative or non-conservative 
systems. Their orbits attract to a stable fixed point or periodic orbit. Zero Lyapunov exponents are 
exhibited by conservative systems for which the orbit is a neutral fixed point.  
 
 
2.2. Correlation Dimension Method 
In correlation dimension method, the correlation integral C(r) is estimated using the Grassberger-
Procaccia algorithm (1983) which uses the reconstructed phase space of the time series as given in 
equation (1). According to this algorithm, for an m-dimensional phase space, the correlation integral 
C(r) is given by  

( ) ( ) ( )
( )

,
1

2lim (3)
1 i jN i j

i j N

C r H r Y Y
N N→∞

≤ < ≤

= − −
− ∑  

where H is the Heaviside function, with 1)( =uH  for 0>u  and 0)( =uH  for 0≤u  where 
( )ji YYru −−=

, r is the radius of the sphere centered on Yi or Yj and N is the number of data. For 

small values of r, the correlation integral holds a power law relation on r, ( ) drrC ~  where d is the 
correlation dimension of the attractor. The correlation exponent or the dimension, d can be calculated 
from the slope of the plot of log C(r) versus log r. 
 
For a chaotic series, the correlation exponent saturates to a constant value on increasing the 
embedding dimension m and the nearest integer above that saturation value indicates the number of 
variables necessary to describe the evolution in time. On the other hand, if the correlation exponent 
increases without reaching a constant value on increase in the embedding dimension, the system 
under investigation is generally considered as stochastic. This is because, contrary to the low 
dimensional chaotic systems, stochastic systems acquire large dimensional subsets of the system 
phase space, leading to an infinite dimension value.  
 
However, the sole presence of finite, non-integer dimension correlation dimension is not sufficient to 
indicate the presence of a strange attractor. Osborne and Provenzale (1989) opposed the traditional 
view that stochastic processes lead to a non-convergence of the correction dimension by 
demonstrating that “colored random noises” characterized by a power law power spectrum exhibit a 
finite and predictable value of the correlation dimension. While the saturation of correlation dimension 
in low dimensional dynamic systems is due to the phase correlations, for the above mentioned 
stochastic systems it is mainly due to the shape of the power spectrum (power law). Hence, it would 
be worthwhile to repeat the correlation dimension on first numerical derivative and phase randomized 
signal of the original data, to distinguish low dimensional dynamics and randomness (Provenzale et 
al., 1992).  
 
In the case of stochastic systems, due to the change in the spectral slope on differentiation, the 
correlation dimension of the differentiated signal will be much larger than that of the original signal. For 
low dimensional dynamic systems, correlation dimension will be almost invariant. In the case of phase 
randomized data, the correlation dimension will be the same as that of the original data, provided the 
convergence of the dimension is forced only by the shape of the power spectrum and not due to any 
low-dimensional dynamics.  
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2.3. False Nearest Neighbor Method 
The concept of false nearest neighbor is based on the concept that if the dynamics in phase space 
can be represented by a smooth vector field, then the neighboring states would be subject to almost 
the same time evolution (Kantz and Schreiber, 2004). Hence, after a short time into the future, any two 
close neighboring trajectories emerging from them should still be close neighbors. In the present 
study, the modified algorithm by Hegger and Kantz (1999) in which the fraction of false nearest 
neighbors are computed in a probabilistic way has been used. The basic idea is to search for all the 
data points which are neighbors in a particular embedding dimension m and which do not remain so, 
upon increasing the embedding dimension to m+1. Considering a particular data point, determine its 
nearest neighbor in the mth dimension. Compute the ratio of the distances between these two points in 
the m+1th and mth dimensions. If this ratio is larger than a particular threshold f, then the neighbor is 
false. When the percentage of false nearest neighbors falls to zero (or a minimum value), the 
corresponding embedding dimension is considered high enough to represent the dynamics of the 
series.  
 
3. DATA USED 
The daily streamflow data at Basantpur station of Mahanadi basin, India for the period June 1972 to 
May 2004 is considered for the present study. The length of Mahanadi river is 860 km. The drainage 
basin extends over an area of 0.141 × 106 km2. Because of its wide basin area and devastating floods, 
numerous studies have been conducted on Mahanadi streamflow focusing on its prediction, flood 
forecasting, the impact of climate change on the future flows (Asokan and Dutta, 2008; Maity and 
Nagesh Kumar, 2008; Maity et al., 2010; Mujumdar and Ghosh, 2008). 
The location map of the Basantpur station on Mahanadi basin is shown in figure 1(a). The frequency 
histogram of the daily streamflow series for the study period is shown in figure 1(b). The streamflow is 
widely varying from 0 to 3.5 ×104 Mm3, with maximum frequency falling in the range of 0-1000 Mm3. 
Major portion of the annual streamflow is received in the monsoon months of July, August and 
September. The non-monsoonal flows are almost invariant, while the monsoon flows show large 
deviations from the mean. 
 

       
           

(a)             (b) 
Figure 1 (a) Location map of the Basantpur station on Mahanadi basin (b) Frequency histogram 
of Basantpur daily streamflow for the period June 1972 to May 2004  
 
 
4. RESULTS AND DISCUSSIONS 
4.1. Preliminary Investigation of Chaos 
As a preliminary investigation, the autocorrelation function and Fourier spectrum are plotted and are 
shown in figure 2(a) and 2(b) respectively. The initial exponential decay of autocorrelation functions 
indicates that the stream flow may be of chaotic nature. The periodic behavior of the autocorrelation 
function for higher lags is due to the seasonal periodicity. The power spectrum is also exhibiting a 
broad band form clearly visible for a large frequency range and a power law shape i.e., ( )P f f α−∝  
with 1.35α ≈ . The choice of the delay time τ is made using the autocorrelation method and the 
mutual information method.  In autocorrelation method, the lag time at which the autocorrelation 
function attains a zero value (fig. 2(a)) i.e., 74th day is considered as the delay time. 
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(a)                   (b) 

Figure 2 (a) Autocorrelation function of Basantpur stream flow; (b) Fourier spectrum of 
Basantpur stream flow 
 
4.2. Determination of Predictability: Lyapunov Exponent 
Lyapunov exponent provides a measure of the exponential growth due to infinitesimal perturbations. 
The maximal Lyapunov exponent is calculated employing the algorithm by Rosenstein et al. (1993) 
which is based on the nearest neighbor approach. The variation of ( )S tΔ with time, t for Basantpur 
station at dimensions m = 4 to 6 is shown in figure 3. The slope of the linear part of the curve gives the 
maximum Lyapunov exponent. A positive slope of around 0.167 confirms the exponential divergence 
of trajectories and hence the chaotic nature of the daily stream flow. The inverse of the Lyapunov 
exponent defines the predictability of the system, which is around 7 days.  
 

 
Figure 3 Variation of ( )S tΔ with time for various embedding dimensions 

 
4.3. Determination of Embedding Dimension 
4.3.1. Correlation Dimension Method: 
The correlation integral C(r) is calculated according to Grassberger-Procaccia algorithm for embedding 
dimensions 1 to 40. A plot of correlation integral C(r) vs. radius r on a log-log scale for embedding 
dimensions m = 1 to 40 is shown in figure 4(a). For each of the embedding dimensions, slope of C(r) 
vs. r over the clear scaling region gives the corresponding correlation exponent. The variation of the 
correlation exponent with the embedding dimension is shown in figure 4(b). The correlation exponent 
is increasing with embedding dimension and reaching a constant saturation value at embedding 
dimension 18m ≥ , which is an indication of the existence of chaos in the stream flow series. The 
saturation value is slightly different for different regions. The saturation value of 5.21 at an embedding 
dimension 18m =  indicates that the number of variables dominantly influencing the stream flow 
dynamics is 6≈ . The low correlation dimension also suggests the possible presence of low-
dimensional chaotic behavior.  
 
The power spectrum of the Basantpur stream flow series is showing a power law behavior with 

1.35α ≈  as shown in figure 2(b). Since the convergence of the correlation dimension can also be 
exhibited by some stochastic series due to its power law behavior of power spectrum, it is 
recommended to perform the correlation dimension method on the first derivative and the phase 
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randomized data of the original signal. A comparison of the variations of correlation exponent with 
embedding dimension for the first derivative of data, phase randomized data and original data are 
shown in figure 4(c). While the variation of correlation exponent of first derivative is almost identical to 
that of the original data with almost the same saturation value, the correlation dimension of the phase 
randomized data set is not converging at all. This eliminates the possibility of linear correlations 
forcing the saturation of correlation exponent and thereby confirms the presence of a low dimensional 
strange attractor in the stream flow series.  
 

       
(a)                  (b) 

 
(c) 

Figure 4. (a) Variation of correlation integral with radius on a log- log scale for embedding 
dimensions from 1 to 40; (b) Variation of correlation exponent with embedding dimension; (c) 
Variation of correlation exponent with embedding dimension for original data, phase 
randomized data and first derivative of data 
 
4.3.2 False Nearest Neighbour Method: 
The modified FNN algorithm by Hegger and Kantz (1999) is applied on the stream flow series. The 
threshold value f is fixed at 5. The variation of the fraction of false nearest neighbors for different 
embedding dimensions is shown in figure 5. The fraction of nearest neighbors is falling to a minimum 
value at an embedding dimension of 7, indicating that minimum 7 variables are necessary to explain 
the entire system. This is in close agreement with the value obtained by the correlation dimension 
method.  

 
Figure 5. Variation of fraction of false nearest neighbors with embedding dimension 

 
5. CONCLUSIONS 
The recent interest in nonlinear dynamics and also chaos theory has drawn attention towards 
considering streamflow as a chaotic system which is much sensitive to initial conditions and short term 
predictability. The present study was aimed at analyzing the chaotic nature of streamflow series using 
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different techniques. The daily streamflow data at Basantpur station of Mahanadi basin, India for the 
period June 1972 to May 2004.  
The positive Lyapunov exponents of the three regions confirm the unpredictability of the systems. The 
predictability of daily streamflow series is limited to only 7 days. The behaviour of streamflow dynamics 
was investigated using correlation dimension method with Grassberger-Procaccia algorithm (GPA). 
The clear scaling region in the C(r) vs. r plot on a log – log scale and also attaining a correlation 
exponent saturation value of 5.21 indicate a low dimensional chaotic behaviour of the streamflow 
series.  
Since colored random noises also exhibit a finite correlation dimension value, the above method is 
repeated on phase randomized data and on first derivative of the streamflow series. The correlation 
dimensions of phase randomized data are not converging, while those of first derivative are almost 
same as of the original data. This elucidates that the saturation of correlation dimension is not due to 
the inherent linear correlation in the data; but because of the low dimensional chaotic dynamics 
present in the data. Since one should not confirm the chaotic nature based on the correlation 
dimension method alone, false nearest neighbor method is also employed to determine the optimum 
embedding dimension. The fraction of false nearest neighbours is falling to a minimum value at an 
embedding dimension of 7, which indicates that the optimum embedding dimension of the streamflow 
series is 7. These results suggest that the seemingly irregular behavior of streamflow process can be 
better explained though a chaotic framework than through a stochastic representation. 
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