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ABSTRACT: A copula is a function that joins or ‘couples’ multivariate distribution function to their one dimensional marginal
distribution functions. The strong theoretical background of copula draws the attention of researchers in recent years in many
application fields, including hydrology and water resources. In this paper, & brief introduction of copula is presented. A new
methodology is proposed for uncertainty quantification based on the theory of copula, which is applicable to any distributional
form of hydrologic time series. Thus, basic requirement of normality, as in the case of many hydrologic models, can be relaxed
which is very important in its own right, The proposed methodology is explained in the context of rainfall-runoff modeling. The
proposed methodology is shown to capture and provide the information of uncertainty associated with prediction. The
proposed methodology is shown to be promising and, being general, can be applied to any other modsling approach.

Keywords: Copula, Hydrologic Models, Uncertainty Quantification, Rainfail, Streamflow.

INTRODUCTION

In the recent years, copula is proven to be a very useful
to many fields of application. It helps to analyze the
multivariate events, which is of great interest to many
applied statistical fields including hydrology and water
resources. Application of copula in the field of water
resources is still is in its nascent stage and, mostly
limited to frequency analysis (Favre ef al, 2004;
Salvadori and Michele, 2004; Grimaldi and Serinaldi,
2005; Zhang and Singh, 2006) and few others (Wang,
2001; Salvadori and Michele, 2006).

Assessment of dependence between two random
variables is the key issues of many modeling
approaches. Standard correlation is the widely used
measure of dependence, which is applicable in the
context of multivariate normal distribution and linear
dependence. However, the nonlinear dependence,
which is very common in many applications, and
nonnormal behavior of time series create difficuities in
the multivariate analysis. For example, distributional
form of streamflow and many other hydrologic
variables are far from Normal distribution. Simulation
of a pair of random variables, with non-normak
distribution, preserving their dependence structure is
very cumbersome, if not impossible. However, copulas

IConference speaker

are able to couple the marginal densities of any form to
produce their joint distribution, preserving their
dependence structure.

In this paper, after presenting a brief overview of
the theory of copula, a new copula-based methodology
for uncertainty quantification is proposed. The
methodology is elucidated with an example of typical
conceptual rainfall-runoff model.

Rest of the paper is organized as follows. The
theory of copula is briefly presented in section 2.
Methodology for uncertainty quantification using the
theory of copula is elaborated in section 3. The
methodology is elucidated with an example of typical
conceptual rainfall-runoff model in section 4 along
with relevant discussion. Finally summary and
conclusions are presented in section 5.

A BRIEF THEORY OF COPULA

A copula is a function that joins or couples multiple
distribution functions to their one-dimensional marginal
distribution functions (Nelsen, 2006). Let X and Y he a
pair of Random Variables (RVs) with Cumulative
Distribution Functions (CDF) as Fx(x) and GHy)
respectively. Also let their joint CDF be Hy Ax, ).
Each pair (x, y) leads to a point in the unit square
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[0, 1T x [0, 1] and this ordered pair in turn corresponds
to a number, Hy, (x, y), in [0, 1]. This correspondence
is indeed a function. This function is known as Copula

(Figure 1).
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Fig. 1: Graphical representation of Copula

Application of copula to probability and statistics is
achieved through the popular Sklar Theorem (Sklar,
1959), which states that, if Hy «x, ) is a joint
distribution function with marginal distribution of X
and ¥ as Fx(x) and G((y) respectively, then there exists
a copula C(w, v) such that for all x, y in Re (—oo, uo),

Hyy(x,y)=C[Fy(»), Fy(»)]. The most important

point to be noted here is that the relationship is
independent of the form of the marginal distribution,
which is the reason behind the popularity of copula
theory in many research areas.

Copula can be used in the study of dependence or
association between random variables in terms of
‘scale-invariant’ or ‘scale-free’ measures. The widely
used scale-free ‘measures of association’ for
dependence structure are Kendall’s tau (r) and
Spearman’s rho (p). It may be noted that, Pearson’s
product moment correlation (p) is a ‘measure of linear
association’ between random variables. It is obvious
that, the estimate of p changes under nonlinear
transformation of random variables. However, t and p;
are scale-invariant and copulas are able to capture
these scale-invariant properties of joint distribution
which are invariant under strictly increasing
_ transformation (Schweizer and Wolff, 1981).

If X and Y are two continuous RV's with copula C,

population version of Kendall’s tau (1) can be
expressed as, .

=4 [C(u,v)dC (u,v) -1 (1)
A complete discussion on copula can be found
elsewhere (Genest and MacKay, 1986a; Genest and
Rivest, 1993; Nelsen, 2006).
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Archimedean Copula

Archimedean Copula, a particular class of copulas, is
most popular to researchers due to its nice mathe-
matical properties. A copula that can be expressed in
terms of C(,v)=gg ! (9 () +@g(v)), is known as
‘Archimedean copula’ (Genest and MacKay, 1986a).
@g(*) is known as generator of the copula and 6 is

the associated parameter. %{-1] (*) is the ‘pseudo

inverse’ of ¢g(*) and defined as,

Il](t) {‘Pe (1),

Basic properties of this class of copulas make them
suitable for most of the research applications. It can be
shown that if X and ¥ are two random variables whose
joint distribution function is an Archimedean copula,
C, generated by ¢, equation 1 for Kendall’s tau (t) gets
reduced to,

0<r<¢(0)

o)<tz P

1=1+4 -Ld ..(3)
oq’ﬂ(u)

Example of Few Archimedean Copulas

Frank (Frank, 1979), Clayton (Clayton, 1978), Ali-
Mikhail-Haq (AMH) and Gumble-Hougaard (GH)
(Gumbel, 1960, Hougaard, 1986) are few examples of
copulas belonging to the class of Archimedean copulas.
Functional forms of these copulas are as follows:

Frank
1, 1+(e-Bu_1)(e—9v_1)

e ? -1

Co (w,v)

where g (7)

excluding 0.
Clayton

°1,0)]

(t'e —1) and Be [l,oo) excluding 0.

'3
Co (#.v) [max(u ¥y

where g (7) =

|-

Ali-Mikhail-Haq

“Cy (u,v)= =

1-8(1-u)(1-v)
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where @ (?) =1n1—_e—(tl—_-ﬂ

Gumbel-Hougaard
Co (u, V) = exp(_[(_ln u)e + (_ In v)g ]1/9 ]

where @q (1) = (—lnt)a and 9 e [-1,)

and 6 ¢ [-1,1)

UNCERTAINTY QUANTIFICATION USING
COPULA

A methodology is proposed to quantify the uncertainty
associated with predicted values of a hydrological
model. However, the uncertainty is associated with
both the observed and predicted values of hydrologic
variables, which are considered to be random variables.

The methodology is explained in the context of
rainfall-runoff model. Steps involved to quantify the
uncertainty associated with predicted streamflows are
as follows:

1. Distributional form of streamflow is identified by
standard statistical methods. This can be achieved
by fitting different probability distributions to stream-
flow data and selecting the most appropriate one.

2. Observed and predicted streamflows are pair wise
transformed through their Cumulative Distribution
Function (CDF), which is identified in step 1. Thus
a pair of uniformly distributed random variables
over [0, 1] is obtained.

3. Association between the observed and predicted
streamflows is estimated in terms of Kendall’s tao.

Let (x, ), (%2,¥2), - » (%5, ¥,) be the paired
samples of two random variables, X and Y. Two

pairs (x,y,) and (xj,yj) are known to be
concordant if (x,- -X J)( ¥i— yj) >0 and discordant

if (x,- —xj)( Y- yj) <0. Sample - estimate of
Kendall’s tau is obtained as the difference between
the probability of concordance and the probability
of discordance. Out of n paired samples, there are
C, different ways of selecting two pairs, If there

are ¢ number of concordant pairs and d number
of discordant pairs, sample estimate of Kendall’s
tau is expressed as,

2= P[(3,-x,)(-,)>0]

—P[(x,--—xj)(y,-—yj)<0] -4
_c¢ d =c—d
tC, "G, "Gy

Water, Environment, Energy and Sociely (WEES-2003)

4. Parameter O, associate with an Archimedean

copula, is estimated by replacing the population
version of Kendall’s tao with its sample estimate
(%), in equation 3. Thus, transformed streamflows
can be simulated through this Archimedean copula
preserving their dependence structure. Such
simulation can be achieved by the algorithm as
explained below (Genest and MacKay, 1986b).

(a) Functional form of (p[_]](o), (p'(_.) and (pf(-')(.)

are obtained where () is the generator function

of the Archimedean copula after replacing the
value of 6 and hence, subscript 6 is omitted

hereafter. Equation 2 is used to obtain (p[—l} (o).

Same can be used for calculating (p'(_l) (®) after
obtaining ¢'(e) which is the derivative of @(e)
with respect to « .

(b)Two independent uniformly  distributed
|:~ Un(O,l)] random variates U and 7T are

generated.
(c) Two new variables, § and W, are obtained as

S=¢'(U)/T and W =¢')(s).
(d) Another  variable, ¥, is obtained as
v = o[ o(W)—(U)]. The pair Uand ¥ are

the simulated pair preserving the dependence
structure,

(e) U and V are then back transformed by their
inverse cumulative distribution function to
‘generate simulated observed and predicted
streamflows in original scale.

. Steps (4a) through (4b) are repeated for different

Archimedean copulas. Genest and Rivest (1993)
described a procedure to select the most appropriate
copula, which is also applied in hydrology (Zhang
and Singh, 2006} and is followed in this study also.
Steps involved to select the most appropriate copula
are as follows:

(a) For a particular Archimedean copula C with
generator function ¢, a parametric function X(z)

is defined as K(z):z— ¢(z) . K@@ is the
| ¢ (=)

distribution function of random variable, C(U,
V) where u and v are the uniformly (0, 1)
distributed RVs (Nelsen, 2006).

(b) A nonparametric estimate of above function,
K.(z) is obtained as the proportion of z; < z, ,
where z; is,
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_ Number of (x;,y,) such that x; <x; and y; < y;
-1

(c) A scatter plot between K(z) and X,(z) is prepared.

(d) Steps (a) to (c) are repeated for all the copulas
considered. The better the fit, the closer will be
the corresponding scatter to a 45° line through
origin.

(¢) Most appropriate copula may also be found out
by calculating the Sum of Square Errors (SSE)
from the 45° line through origin for all copulas.
The copula with the smallest SSE is the most
appropriate one.

6. Joint distribution function is obtained analytically
after selecting the best copula. However, in many
cases of hydrologic applications, analytical solution
may not always be feasible. In such cases, large
number of numerically simulated jointly distributed
values are used, which is carried out in this study
also.

7. Keeping any predicted streamflow value at the
centre, a sufficiently ‘small’ window around it, is
selected. Statistical property of the observed
streamflow values, lying within this window, is
expressed through box plot. The median of these
values is used as a prediction. The interquartile
range (75" percentile — 25" percentile) of these
values indicates the associated uncertainty. This is
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equivalent to the conditional distribution in an
analytical sense.

It may be noted that the association between the
observed and predicted time series is simulated
preserving their scale free measure of association with
each other. Since the predicted time series is associated
with all possible sources of uncertainty, the copula-
based methodology for uncertainty quantification
integrates the uncertainties from all the possible
sources. This is a valuable addition towards the
uncertainty quantification of hydrologic models.

Another important point is that, the choice of
window size, mentioned above, is a subjective choice.
A “too large” window will conceal the existing
nonlinearities whereas a “too small” window may
suffer from insufficient data points to represent the
statistical properties. An acceptable remedy is to
simulate a sufficiently ‘large’ number of data points
and minimize the window size as much as possible.

RESULTS AND DISCUSSIONS OF A CASE
STUDY

The methodology explained above is applied to a
subbasin of Mahanadi River located in the state of
Chattisgarh in India (Figure 2). The watershed is
having an area of approximately 46000 sq. km. with an
undulating topography. Mahanadi River is an ephemeral
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Fig. 2: Location map of Watershed
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river and rainfall during the monsoon season (June
through September) mostly causes the streamflows. As
a consequence major floods occur during monsoon
season only. For the rest of the year, streamflows are
mostly zero (Patri, 1993). So, only the monsoon period
is considered in this study.

Daily streamflow at the outlet of the watershed
(Seorinarayan) and daily rainfall data from two rain
gauge stations (Raipur and Pendrarcad) in the
upstream catchment (refer Figure 2) are obtained from
the office of Executive Engineer, Mahanadi Division,
Central Water Commission (CWC), India.

Considering the streamflow at Seorinarayan and
weighted average rainfall at Raipur and Pendraroad, a
conceptual rainfall-runoff model is applied. The
conceptual rainfall-runoff model is not explained in
this paper. However, the results during calibration and
testing period are shown in Figures 3 and 4 respectively.
It is observed that, during testing period, predicted
values are highly associated with the observed values
having a correlation coefficient (p) of 0.90 (linear
dependence) and Kendall’s tao (1) of 0.76 (scale free
measure of association). Moreover, the model success-
fully captures the low flows as well as high flows.

1400,

Dty Syoamfion (riosy]
2 g g g

g

gM L 4 L L L L b
1 0 30 40 50 60 kL] 80 9 0 110 120

Dates (rom June 3. 2001 to Septembaer 30. 2001)
—6—Dbserved —%—Pradicted  Coelation covficient = 088 Kendaks Tau= 082

Fig. 3: Results of a conceptual rainfail-runoff model during
calibration period (June 3, 2001 to September 30, 2001)

In a view to get at uncertainty quantification, distri-
butional form of streamflows is investigated. Observed
streamflows are plotted against corresponding non-
exceedence probabilities and cumulative distribution
functions for different probability densities are fitted
(Figure 5). Daily streamflow is found to be best fitted
with gamma distribution as fy (x)= ! x*le E,

| BT (o)
with parameters o =0.545 and B =314.

Water, Environment, Energy and Society (WEES-20089)
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Fig. 4: Resuits of a conceptual rainfall-runoff model
during testing period (June 3, 2002 to September 30, 2002)
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Fig. 5: Daily streamflow fitted with different
probability densities

Association between observed and predicted stream-
flows is simulated with four different Archi-medean
copulas namely: (i) Frank, (ii) Clayton, (iii) Ali-
Mikhail-Haq (AMH) and (iv) Gumbel-Hougaard (GH)
copulas (Figure 6). Following specific obser-vations
are made form Figure 6.

(a) AMH copula is found to be worst case to capture
the association between observed and predicted
streamflows as compared to other cases.

(b) Though the GH copula seems to be well fitted, a’
critical observation is that the errors are more or
less same for low as well as high streamflows which
is quite unlikely in reality. The error should be less
for low streamflows and high for high streamflows.

(c) Both Frank and Clayton copulas are found to be
equally well.

However, to select the better among Frank and Clayton
copulas, the procedure explained in step 5 of
methodology is followed. Scatter plots between K(z)
and K,(z) are prepared for Frank and Clayton copulas
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Fig. 6: Simulation of association between observed and predicted streamflows using different copulas

(Figure 7) and the corresponding SSE are displayed
within parentheses. It is found that Frank copula is
performing better than Clayton and thus selected.
Numerically simulated values with Frank copula are
used to prepare the box plots showing the uncertainty
associated with the predicted values as described in
step 7 of the methodology.

©  Frank (0.022)
*  Clayton (0.065)

Parametric
o
[+:]

<o
IS

*

o .
0 02 04 06 0.8 1

Non-Parametric

Fig. 7: Scatter plot between parametric, K(z) and non-
parametric, K(z) for Frank and Clayton copulas with
corresponding SSE displayed within parentheses

Model Performance

The methodology is tested for the monsoon season of
2002, i.e., June, 2002 to September, 2002. A
comparison plot between observed and predicted
streamflows is shown along with box plots, showing
the information regarding uncertainty associated with

the predicted values (Figure 8). It is observed that
observed streamflows are mostly lying within the
interquartile range of the predicted uncertainty, except
for few cases, which indicates the successful capture of
uncertainty. It is also observed that, the higher the
streamflows the higher is the associated uncertainty,
which is obvious and reflects the factual position.

Thus, the proposed methodology for uncertainty
quantification is an useful technique that aggregates all
the possible sources of uncertainty, associated with the
predicted values as discussed earlier. This methodology,
being general, can be applied to any other modeling
approach too,

SUMMARY AND CONCLUSIONS

In this paper a new methodology is proposed for
uncertainty  quantification associated with the
prediction of hydrologic variables using copulas. The
methodology is elucidated in the context of a
conceptual rainfall-runoff model even though the
conceptual rainfall-runoff’ model is not in this paper.
Rather the performance of the model is explained for
streamflow prediction at daily time-scale and is shown
to be able to capture a wide range of possible
streamflows, including very low flows as well as very
high flows. It is observed that the predicted daily
streamflows are highly associated with the observed
streamflows with correlation coefficient (p) of 0.90
(linear dependence) and Kendall’s tac (t) of 0.75
(scale free measure of association).
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Fig. 8: Observed and predicted streamflows along with

box plots, showing the information of uncertainty
associated with the predicted values

Proposed methodology for uncertainty quantification

using copulas is a valuable addition to the field of
hydrology and water resources. Apart from its
simplicity, the approach, being general, can be applied
to any prediction model. Two major advantages of the
proposed methodology, apart from the usual beneﬁts
of copula, are as follows:

1. The predicted time series is associated with all
possible sources of uncertainty. Being the fact that
the association between observed and predicted
time series is simulated, preserving the association
between them, the proposed copula-based methodo-
logy integrates the uncertainties from all the possible
sources. This is a valuable addition towards the
uncertainty quantification in hydrologic models.

2. Distributional form of hydrologic variables may
vary over a wide range of distributions. Exploiting
the capability of copula, the methodology can be
apyplied to any hydrologic variables irrespective of
its distributional form. :

Association, in terms of correlation coefficient (linear
dependence) and Kendall’s tao (scale free measure of
association), between observed and predicted hydrologic
variables for other hydrologic models may vary over a
wide range. Copula being capable of simulating a wide
range of dependence (Favre et al., 2004), the proposed
methodology is applicable irrespective of the strength
of association. However, lesser strength of association
will lead to vaguer information of uncertainty.
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