

EMR Energy

· Energy of a quantum

E = hf

E in Joules (J)

h – Planck's constant, 6.626 x 10⁻³⁴ J sec

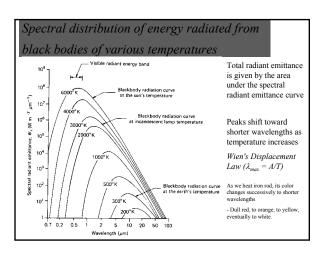
f-Frequency

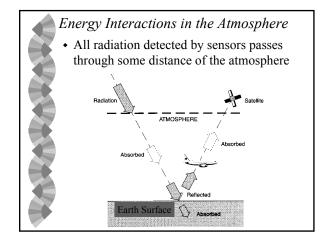
 $E = h c / \lambda$

- Energy of a quantum is inversely proportional to its wavelength
- · Longer the wavelength, the lower its energy content
- The low energy content of long wavelength means that, in general, systems operating at long wavelength must 'view' large areas of the earth in order to obtain a detectable signal

EMR Source

- · Sun is the primary source
- All matter at temperature above absolute zero (0°K or -273° C) continuously emit EMR
- Energy emitted is, among other things, a function of surface temperature.
- · Stefan-Boltzmann Law (Black body)


 $W = \sigma T^4$


W - Total radiant emittance in W m-2

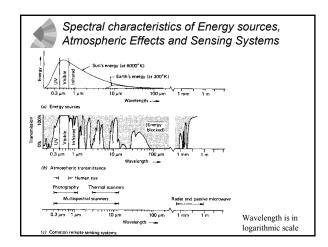
- σ Stefan-Boltzmann constant, 5.6697 x 10-8 $Wm^{\text{-}2o}K^{\text{-}4}$
- T Absolute temperature (0°K) of the emitting material
- Energy from an object varies as T^4 .

 Increases rapidly with increase in Temperature

A black body is a hypothetical ideal radiator that totally absorbs and re-emits all energy incident upon it

Energy Interactions (Contd..) Scattering & Absorption Scattering Scattering is unpredictable distribution

- Scattering is unpredictable distribution of radiation by particles in the atmosphere
- Rayleigh scatter is common when radiation interacts with particles which are smaller in diameter than the wavelength.
 - Inversely proportional to fourth power of wavelength
 - · Short wavelengths get scattered more
 - A blue sky is a manifestation of Rayleigh scatter
 - Rayleigh scatter is primary cause for 'haze' in imagery (results in bluish-gray photos) (Blue Filter)


Scattering (Contd..)

- Mie Scatter is common when radiation interacts with atmospheric particles diameters which are essentially equal to the wavelength.
 - · Water vapour and dust are major causes of Mie scatter
 - Influences longer wavelengths when compared to Rayleigh scatter
 - · Mie scatter is significant in overcast conditions
- Nonselective scatter is common when radiation interacts with particles which are much larger in diameter than the wavelength
 - Water droplets (5-100 μm) cause such scatter
 - · Scatter all visible and reflected IR wavelengths
 - · Fog and Clouds appear white

Absorption

- In contrast to scatter, atmospheric absorption results in effective loss of energy to atmospheric constituents.
 - Most efficient absorbers are water vapour, cadbon dioxide and ozone.
 - As absorption occurs in specific wavelengths, they strongly influence "where we look" spectrally with any sensor.
 - Wavelength ranges in which the atmosphere is particularly transmissive of energy are called Atmospheric Windows

Spectral Characteristics ...

- Spectral sensitivity range of eye coincides with an atmospheric window and peak level of energy from the sun
- Emitted heat energy from the earth, is sensed through the windows at 3 5μm and 8 11 μm using Thermal scanners
- Multi Spectral Sensors sense simultaneously through multiple, narrow wavelength ranges that can be located at various points in visible through the thermal spectral regions
- Radar and Passive microwave systems operate through a window in the 1 mm to 1 m region

Sensor Selection

- Spectral sensitivity of the sensors available
- Presence or absence of atmospheric windows in the spectral range(s) in which one wishes to sense
- Source, magnitude, and spectral composition of the energy available in these ranges
- Manner in which the energy interacts with the features under investigation