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Convexity
 If the objective function or the 

constraints are not concave or 
convex, the problem is usually 
mathematically intractable

 A function is strictly convex if 
a line connecting any two points 
on the function lies completely 
above the function

 A function is strictly convex if 
its slope is continually 
increasing or

 If > is replaced by >= then it is 
called convex function (but not 
strictly convex)

Concavity
 Similarly a function is strictly 

concave if a line connecting any 
two points on the function lies 
completely below the function

 A function is strictly concave if 
it l i ti llits slope is continually 
decreasing or

 If < is replaced by <= then it is 
called concave function (but not 
strictly concave)

Functions of two or more variables
 Functions of two or more variables  f(X), X=[x1,x2, ..,xn] is 

strictly convex if 

 where X1 and X2 are points located by the coordinates given 
in their respective vectors

 To determine convexity or concavity of a function of y y
multiple variables, the eigen values of it Hessian matrix 
should be examined
• If all eigen values of the Hessian are negative the function is strictly 

concave

• If all eigen values of the Hessian are positive the function is strictly 
convex

• If some eigen values are positive and some negative, or some are 
zero, the function is neither strictly concave nor strictly convex

Hessian Matrix Properties of concave and convex functions

 A local minimum of a convex function is also the 
global minimum, and a local maximum of a 
concave function is also the global maximum

 A straight line is both concave and convex

 The sum of (strictly) convex functions is (strictly) ( y) ( y)
convex, and the sum of concave functions is 
concave

 If f(X) is a convex function and k is a constant, 
then

• k f(X) is convex if k > 0 and

• k f(X) is concave if k < 0
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Optimization of a Function of One Variable

 To determine the stationary points, the equation 
f/x = 0 should be solved

 To determine convexity or concavity, the second 
derivatives should be examined
• If 2f/ x2 > 0 for all values of x, f(x) is convex and the 

stationary point is a Global Minimum
If 2f/  2 < 0 f ll l f f( ) i d th

dxf /

• If 2f/ x2 < 0 for all values of x, f(x) is concave and the 
stationary point is a Global Maximum

• If the function is neither concave nor convex, the 
following test may be used to classify stationary points

• Find the first non zero higher-order derivative. Let this be the nth

derivative of f(x), i.e., nf/ xn at x0 ≠ 0, where x0 is the 
stationary point

• If n is odd, x0 is a Saddle point
• If n is even, x0 is a local maximum or minimum

– If nf/ xn at x0 < 0, then x0 is a local maximum
– If nf/ xn at x0 > 0, then x0 is a local minimum.

Optimization of a Function of Multiple Variables

 A necessary condition for a stationary point of the function 
f(X) is that each partial derivative should be equal to zero. 
In other words, each element of the gradient vector must 
equal zero where the gradient vector of f(X) is as follows.

 To check the sufficient condition at X0, Hessian matrix of 
f(X) at X0 should be formulated and solved for eigenf(X) at  X0 should be formulated and solved for eigen 
values. Then stationary point may be classified as per the 
following rules.
• If all eigen values of the Hessian are negative at X0, then X0 is a 

local maximum. If all eigen values of the Hessian are negative for 
all possible values of X, then X0 is a global maximum

• If all eigen values of the Hessian are positive at X0, then X0 is a 
local minimum. If all eigen values of the Hessian are positive for 
all possible values of X, then X0 is a global minimum

• If some eigen values of the Hessian are positive and some negative 
or if some zero, the stationary point, X0, is neither local minimum 
nor local maximum. 

Example
 The yield of a chemical reaction is the actual production as a percent of that which 

is theoretically possible. In a large commercial operation, production is found to be 
a function of two catalysts x1 and x2, where the objective is to maximize yield (%): 
f(X) = 60 + 8x1 + 2x2 – x1

2 – 0.5x2
2

Stationary point X =[4,2]. Compute second derivatives

The values of e do not depend on X and e1 = -2, e2 = -1. 

Since both the eigen values are negative, f(X) is concave and
x1 = 4%, x2 = 2% will give the global maximum yield of
f(X) = 78.0%
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Optimization of a Function of Multiple Variables 
subject to Equality Constraints

 A function of two variables subject to a 
single equality constraint

 If there are only two variables, f(X) is 
analogous to the contour mapping of hill 
and g(X) to a fence on the hill. The 
objective is to locate the point on the fence 
that lies at the highest, or lowest elevation

N t th t th bj ti f ti f(X) i Note that the objective function, f(X), is 
not necessarily linear and the constraint 
equation, g(X), also may not be linear

A powerful technique for dealing with this type of optimization 
problem is through Lagrangian multipliers. 

The Lagrangian Function is formulated as follows

More than one equality constraints 

Following sets of equations must be solved to obtain a solution.

There are (n+m) unknowns and (n+m) equations.

Lagangian Approach – contd..

Check for sufficient condition

p=1,2,.., m, i=1,2,…,n

If each root of e of the equation 
∆e =0, is negative, then the 
point X is a local maximum

If all roots are positive, then 
the point X is a local minimum

If some are positive and some 
negative, X is neither local 
maximum nor a local minimum
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Optimization of a Function of Multiple Variables 
subject to Inequality Constraints

 If there are only two variables, 
f(X) is analogous to the contour 
mapping of hill and gi(X) are like 
several fences on the hill. The 
objective is to locate the point on 
the fences or the field enclosed by 
the fences that lies at the highest, 
or lowest elevation

 Convex Region: A region isConvex Region: A region is 
convex, if a straight line 
connecting any two points in the 
region lies entirely in the region.

If all constraints are straight lines, the feasible region will automatically be 
convex

The procedures explained here are applicable only if the feasible region is 
convex. Otherwise search procedures are to be used

Example

First, establish that f (X) is a 
concave function

Kuhn-Tucker Conditions


