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( Convexity

+ If the objective function or the
constraints are not concave or

convex, the problem is usually N

mathematically intractable o
« A function is strictly convex if |uix e -
a line connecting any two points fux)
on the function lies completely | " -
above the function X ARG X

+ A function is strictly convex if
its slope is continually
increasing or @7ax" >0 flax, + (1) % ] <o f1x,) + (1) fixs

+ If>isreplaced by >= then it is )
called convex function (but not where 0 < a <1

strictly convex)

( Concavity

« Similarly a function is strictly
concave if a line connecting any
two points on the function lies o
completely below the function |

+ A function is strictly concave if e
its slope is continually
decreasing or Aoy’ <0

-

If <is replaced by <= then it is
called concave function (but not
strictly concave)

where 0 - «

ey + (T-u) Xy | = o X))+ (1) Kxy)

( Functions of two or more variables

« Functions of two or more variables f(X), X=[X1,X,, ...X,] is
strictly convex if

FoX, +(1-a) X5 1< a X))+ (T-a) §X5)
where X; and X, are points located by the coordinates given
in their respective vectors

-

-

To determine convexity or concavity of a function of
multiple variables, the eigen values of it Hessian matrix
should be examined

If all eigen values of the Hessian are negative the function is strictly
concave

.

If all eigen values of the Hessian are positive the function is strictly
convex

.

If some eigen values are positive and some negative, or some are
zero, the function is neither strictly concave nor strictly convex
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4 Hessian Matrix
( a*f - - of |
—. ax,? ax, 3x, ax dxy
*f ?f - — -

( %, 3x, ax,? 3x, axyy
—’ Hexy = : : - -

‘: a1 *f - ——
( L ax, 3%, ax;, 0%, axn1

Properties of concave and convex functions

+ A local minimum of a convex function is also the
global minimum, and a local maximum of a
concave function is also the global maximum

+ A straight line is both concave and convex

+ The sum of (strictly) convex functions is (strictly)
convex, and the sum of concave functions is
concave

+ If f(X) is a convex function and k is a constant,
then

* k f(X) is convex if k > 0 and
* k f(X) is concave if k <0

eASASAIAA
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( Optimization of a Function of One Variable

—. + To determine the stationary points, the equation
( 0f/ox = 0 should be solved

+ To determine convexity or concavity, the second
derivatives should be examined
« If 82f7 0x% > 0 for all values of x, f(x) is convex and the
stationary point is a Global Minimum
« If 0t/ 0x* < 0 for all values of x, f(x) is concave and the
stationary point is a Global Maximum

« If the function is neither concave nor convex, the
following test may be used to classify stationary points
+ Find the first non zero higher-order derivative. Let this be the n'
derivative of f(x), i.e., 0"/ Ox" at x, # 0, where X, is the
stationary point
* Ifnis odd, x, is a Saddle point
« Ifnis even, X, is a local maximum or minimum
If &°f/ 6x" at x, < 0, then X, is a local maximum
— If O°f/ Ox™ at x> 0, then X, is a local minimum.
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Optimization of a Function of Multiple Variables

—. + A necessary condition for a stationary point of the function
f(X) is that each partial derivative should be equal to zero.
In other words, each element of the gradient vector must
equal zero where the gradient vector of f(X) is as follows.

* Gradient Vector = | cfixg vy oFiny .. afex,]” where T'stands br transpose

( + To check the sufficient condition at X, Hessian matrix of
f(X) at X, should be formulated and solved for eigen

values. Then stationary point may be classified as per the

following rules.

* Ifall eigen values of the Hessian are negative at X, then X,, is a

local maximum. If all eigen values of the Hessian are neganve for

all possible values of X, then X, is a global maximum

If all eigen values of the Hessian are positive at X, then X, is a

local minimum. If all eigen values of the Hessian are posmve for

all possible values of X, then X, is a global minimum

If some eigen values of the Hessian are positive and some negative

or if some zero, the stationary point, X, is neither local minimum

nor local maximum.

Zat 2t

Example

The yield of a chemical reaction is the actual production as a percent of that which
is theoretically possible. In a large commercial operation, production is found to be
a function of two catalysts X, and x,, where the objective is to maximize yield (%):

f(X) = 60 + 8x, +2x, — X,> — 0.5x,>

g 2 =0 ¥ k=0
axy 3%
Stationary point X =[4,2]. Compute second derivatives
2 2
2, B T
ax,? ax,? 9x, 0%,
-2 0 c+2 0
H= |el —H |= =(e+2)(e+1)=0
o -l 0 &+l

The values of e do not depend on X and ¢; = -2, ¢, = -1.
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Since both the eigen values are negative, f(X) is concave and
—. X, = 4%, X, = 2% will give the global maximum yield of
f(X) = 78.0%

Optimization of a Function of Multiple Variables
subject to Equality Constraints

.

A function of two variables subject to a
single equality constraint

.

If there are only two variables, f(X) is
analogous to the contour mapping of hill
and g(X) to a fence on the hill. The
objective is to locate the point on the fence 2
that lies at the highest, or lowest elevation

.

Note that the objective function, f(X), is ‘ g(x]
not necessarily linear and the constraint

equation, g(X), also may not be linear X

A powerful technique for dealing with this type of optimization
problem is through Lagrangian multipliers.

The Lagrangian Function is formulated as follows

h(X. 1) = fiX)- 1 g(X)

lAlAlAlAlA

More than one equality constraints

Maximise (or Minimise) §X)

—. Subject 1o 2 Xy =0

2AX)=0

- £,(X) 0
( h(X,l]ﬁt{X}—:‘_lul[X} ’~1.,_\[X}' e B (X)

“m g m

( Following sets of equations must be solved to obtain a solution.

chiX. )/ ¢
FhiX R S

=0 fori=1,2
=0 forp=1,2,

( There are (n+m) unknowns and (n+m) equations.

Lagangian Approach — contd..

Check for sufficient condition

K, =dhX W) ax; ax at X, fori,j=1.2,...n

L, = og(X) o,

pi

p=12,.,m,i=1,2,....,n

SAIA

If each root of e of the equation
Ae =0, is negative, then the
) point X is a local maximum

If all roots are positive, then
the point X is a local minimum

If some are positive and some
negative, X is neither local
0 maximum nor a local minimum




( Optimization of a Function of Multiple Variables

subject to Inequality Constraints
+ If there are only two variables,

f(X) is analogous to the contour

mapping of hill and g;(X) are like 92k,
several fences on the hill. The

objective is to locate the point on

1
the fences or the field enclosed by x, @ 01
the fences that lies at the highest, 160
or lowest elevation //
Convex Region: A region is

. B h £(x)
convex, if a straight line

connecting any two points in the Feasible
region

40

region lies entirely in the region.

Xy
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—. If all constraints are straight lines, the feasible region will automatically be
convex

The procedures explained here are applicable only if the feasible region is
—. convex. Otherwise search procedures are to be used

If £(X) is convex for minimising (concave for maximising),

the problemis stated in either of the bllowing formats.

Max f(X) Min f(X)
subject to (X)) <0 subject to 2(X) >0
2(X) < 0 2(X) >0
2u(X) <0 2u(X) > 0
(all g(X) are convex) (all g(X) are concave)
g
A Lagrangian multiplier approach may be used to investigate the function:

h(X, 1) = £(X) - 124(X) - hags(X) - ... - kg (X)
(The above conditions ensure a convex fasible region).

is not active

If any %; <0, the constraint associated with that J;
and another solution should be obtained disregarding inactive constraints.

-

Examp

Consider the 2llowing optimisation problem
Maximise f(X) = 60 + 8 x, + 2% - %7 - 0.5 5,7

l Subject to 40 % +20%-140 20 First, EStab"Sh thatf(X)isa
50% 435 %-200 - 0 concave function
-
h(L L) =60+ 8 %, +2 %= %7 - 0.5 %7 - 1 (40 %, + 20 x,- 140) - 15 (50 x; + 35 x, - 200)
Ny =400y =500, -0
%-200, - il

— L 40%-20 %+ 1400
.—-*(J\-ﬁ\\ 200=0

=60+ 8x +2 x:-x,:-ll.i x_‘r-}.ﬁ-l-nx, +20 x, - 140)
x-_.,-J.u:-,, 0

gy =2~ %-200,=0

Ah/dhy = =40 %, - 20 %, + 140 =0

Solving these cquations we get X, =3, x,=1, and 4 =005

This is the selution for the g
and the Maximised value ol [(X) is 76.3.

ven problemwith two constraints

\ﬁuhn-Tucker Conditions |

Ihe Kuhn-Tucker Conditions are the neces

arv conditions bra point to bea
ity constraints.

[ local optimumola Binction subject 1o inequ
‘This is a precise mathematical statement ofthe procedure used in the previous section

‘II' we wish to maximise [(X) subject to g (X)<0. g,(X)<0. ... g (X)<0.
where XN=[x; % ... x]. then
Kuhn-Tucker Conditions for X'=[x," %" ... %, to be a local optimumare

w0 §, W

=0 for i=1,

Wat X=X

(‘{\'f. -1 (‘1,\'“.
jand Lgi(X) =0 gi(X) <0
A =0 Jorj=1.2...pat X=X
Ao

[ These are sufficient conditions for a global maximum
if f(X)is concave and the constraints forma convex set




