= Convexity
Qa8

If the objective function or the
constraints are not concave or
convex, the problem is usually
mathematically intractable

A function is strictly convex if
Non-linear O pt| mization a line connecting any two points

. on the function lies completely
using Calculus above the function
A function is strictly convex if
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- Concavity = Functions of two or more variables

Functions of two or more variables f(X), X=[X;,X,, ...X,] is
strictly convex if

foX, H(1-o) X | < a X))+ (1-a) {X5)
where X; and X, are points located by the coordinates given
in their respective vectors

Similarly a function is strictly
concave if a line connecting any
two points on the function lies
completely below the function
A function is strictly concave if
its slope is continually
decreasing or

To determine con or concavity of a function of
multiple variables, the eigen values of it Hessian matrix
should be examined

If <is replaced by <= then it is
called concave function (but not
strictly concave)

gen values of the Hessian are negative the function is strictly
.
« Ifall eigen values of the Hessian are positive the function is strictly
I[ux] ) s = a i) v il-a) Hx;) convex
where o . « If some eigen values are positive and some negative, or some are
y y zero, the function is neither strictly concave nor s ly convex
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= Hessian Matrix = Properties of concave and convex functions

A local minimum of a convex function is also the
global minimum, and a local maximum of a
concave function is also the global maximum
A straight line is both concave and convex
The sum of (strictly) convex functions is (strictly)
convex, and the sum of concave functions is
concave
If f(X) is a convex function and k is a constant,
then

e kf(X)isc < if k >0 and

e kfi(X)isc eifk<0
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ms Optimization of a Function of One Variable

To determine the stationary points, the equation
of/ox = 0 should be solved
To determine convexity or concavity, the second
derivatives should be examined
If 0%t/ o 0 for all values of x, f(x) is convex and the
stationa bint is a Global Minimum

0 for all valu , f(x) is cave and the
i a Global Maximum

If the fun
following test may be sify points
der derivative. Let this be the n
) fx), K" at X, # 0, where X, is the
stationary point
If nis odd, x, is a Saddle point
local maximum or minimum
<0, then X, is a local maximum
> 0, then X, is a local minimum.
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Example

The yield of a chemical reaction is the actual production as a percent of that which
is theoretically ble. In a large commercial of ion, production is found to be
where the objecti to maximize yield (%):

af ~
X =
3%y

d derivatives

The values of e do not depend on X
Since both the eigen values are negative, f(X) is concave and
=4%, x, = 2% will give the global maximum yield of
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Maxinise (or Minimise) §X)
LX)=0
A X)=0

= Optimization of a Function of Multiple Variables

condition for a stationary point of the function
hat each partial derivative should be equal to zero.
In other words, each element of the gradient vector must
equal zero where the gradient vector of f(X) is as follows.

check the sufficient condition at X, Hessian matrix of
f(X) at X formulated and solved for eigen

X, then X, i
ian are negative for
a global maximum
X, then X,
local minimum. If e Hessian are positive for
ible value hen : global minimum
i ositive and some negativ
0 neither local minimum
nor local maximum.
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Optimization of a Function of Multiple Variables
M8 subject to Equality Constraints

A function of two variables subject to a

to the contour mapping of hill
) to a fence on the hill e .
is to locate the point on the fence |id
at the highest, or low

A powerful technique for dealing with this type of optimization
problem is through Lagrangian multipliers.
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wm The Lagrangian Function is formulated as follows
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Lagangian Approach — contd..

Check for sufficient condition

If each root of e of the equation
, is negative, then the
point X is a local maximum

If all roots are positive, then
the point X is a local minimum

If some are positive and some
negative, X is neither local
maximum nor a local minimu




Optimization of a Function of Multiple Variables
subject to Inequality Constraints

If there are only two variables,
f(X) is analogous to the contour
mapping of hill and gy( re like
. The
to locate the point on
il d by B

the fences that lies at the highest,
or lowest elevation

egion lies entirely in the region.
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If all constraints are straight lines, the feasible region will automatically be
nve>
-
\ The procedures explained here are applicable only if the feasible region is

convex. Otherwise search procedures are to be used

“onsider the Bllowing optimisation problem
Maximise f{X) = 60 + 8 x, + 2

N

)
ce D
=200 -0

First, establish that f (X) is a

Subject to 40 %, + .
AR ! concave function

S0 x, +

RX.A)=60+ 8 x +2 % =%, =05 B (40 % + 20 % - 140) =35 (530 %, + 35 x, - 200)

- W - 200k, -350,
40w - 200%, + 140 =0
- 50 x

-35 %+

120,369, 3,,=-0,225

mstraint should be de problemshou as Bllows.

Ex 2% %705 % (40 %, + 20 x,

Mo =2 %-204,=0
Ghy = =40 % -20 %, + 140 =0

Solving these equations w 3.%,=1.and i =005

This is the solution for the roblemwith two constraints

and the Maxinised value

If f{X} is convex for minimising (concave for naximising ),

the problemis stated in either of the fllowing formats.
Max [(X) Min (X)

subject 1o 24X) =0 subject to 2(X)=0
2:(X) =0

XD =0

concave)

rangian multiplier approach may be used to investigate the function:
h(X, 2) = f(X)- 4, (X) -

nother solution should be obtained disr

The Kuhn-Tucker Conditions are the necessary conditions ora point to bea

local optinu function subject to inequality constraints.

This is a precise mathematical statement ofthe procedure used in the previous seetion

1M we wish to ma

use [(X) subject 1o g (
where XN=[x; % ... x]. then
Kuhn-Tucker Conditions for X

J<0. g, (X)=0. ... X)=0.

[%, % ...x, |tobealocal optimumare

for i=12...n at X=X"~

and Lgi(X)=10 g(X) <0
A =0 forj=1.2...pat X=X

These are sufficient conditions for a global maximum
if f(X)is concave and the constraints forma convex set




