

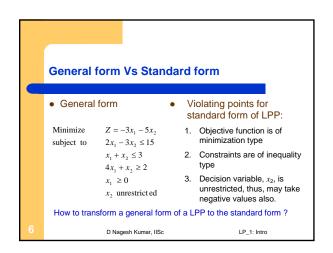
Standard form of LP problems

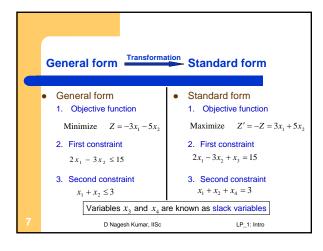
Standard form of LP problems must have following three characteristics:

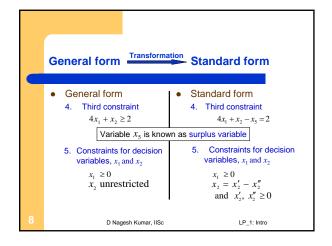
Discretive function should be of maximization type

All the constraints should be of equality type

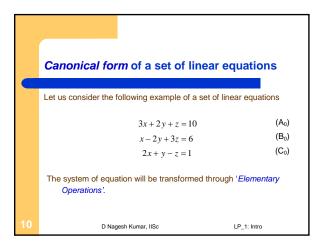
All the decision variables should be nonnegative







Canonical form of LP Problems The 'objective function' and all the 'equality constraints' (standard form of LP problems) can be expressed in canonical form. Canonical form of LP problems is essential for simplex method (will be discussed later) Canonical form of a set of linear equations will be discussed next.



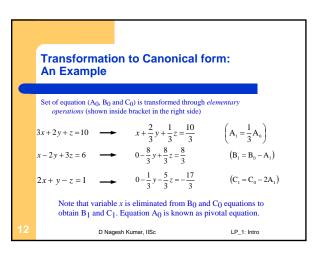
Elementary Operations

The following operations are known as elementary operations:

1. Any equation E_r can be replaced by kE_r, where k is a nonzero constant.

2. Any equation E_r can be replaced by E_r + kE_s, where E_s is another equation of the system and k is as defined above.

Note: Transformed set of equations through elementary operations is equivalent to the original set of equations. Thus, solution of transformed set of equations is the solution of original set of equations too.



Transformation to Canonical form: Example contd.

Following similar procedure, y is eliminated from equation A₁ and C₁ considering B₁ as pivotal equation:

$$x+0+z=4 \qquad \left(A_2 = A_1 - \frac{2}{3}B_2\right)$$

$$0+y-z=-1 \qquad \left(B_2 = -\frac{3}{8}B_1\right)$$

$$0+0-2z=-6 \qquad \left(C_2 = C_1 + \frac{1}{2}B_2\right)$$

D Nagesh Kumar, IISc

LP_1: Intro

LP_1: Intro

Transformation to Canonical form: Example contd.

Finally, z is eliminated form equation A_2 and B_2 considering C_2 as pivotal equation :

$$x+0+0=1$$
 $(A_3 = A_2 - C_3)$
 $0+y+0=2$ $(B_3 = B_2 + C_3)$
 $0+0+z=3$ $(C_3 = -\frac{1}{2}C_2)$

Note: Pivotal equation is transformed first and using the transformed pivotal equation

The set of equations (A3, B3 and C3) is said to be in Canonical form which is equivalent to the original set of equations (A0, B0 and C0)

> D Nagesh Kumar, IISc LP_1: Intro

Pivotal Operation

Operation at each step to eliminate one variable at a time, from all equations except one, is known as pivotal

Number of *pivotal operations* are same as the number of variables in the set of equations.

Three pivotal operations were carried out to obtain the canonical form of set of equations in last example having three variables.

D Nagesh Kumar, IISc

Transformation to Canonical form: Generalized procedure

Consider the following system of n equations with n variables

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
 (E₁)

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
 (E_2) \vdots

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$
 (E_n)

D Nagesh Kumar, IISc LP_1: Intro

Transformation to Canonical form: Generalized procedure

Canonical form of above system of equations can be obtained by performing n pivotal operations

Variable x_i ($i = 1 \cdots n$) is eliminated from all equations except j th equation for which a_{ii} is nonzero.

General procedure for one pivotal operation consists of following two steps,

- 1. Divide j^{th} equation by a_{ji} . Let us designate it as (E'_j) , i.e., $E'_j =$
- 2. Subtract a_{ki} times of (E'_i) equation from

k th equation $(k = 1, 2, \dots, j-1, j+1, \dots, n)$, i.e., $E_k - a_{ki}E'_j$ D Nagesh Kumar, IISc LP 1: Intro

Transformation to Canonical form: Generalized procedure

After repeating above steps for all the variables in the system of equations, the canonical form will be obtained as follows:

$$1x_1 + 0x_2 + \dots + 0x_n = b_1''$$
 (E_1^c)

$$\begin{array}{lll} 0x_1 + 1x_2 + \cdots \cdots + 0x_n = b_2'' & (E_2') \\ \vdots & & \vdots \\ \vdots & & \vdots \\ 0x_1 + 0x_2 + \cdots \cdots + 1x_n = b_n'' & (E_n'') \end{array}$$

It is obvious that solution of above set of equation such as $x_i = b_i^m$ is the solution of original set of equations also.

D Nagesh Kumar, IISc

Transformation to Canonical form: More general case

Consider more general case for which the system of equations has m equation with n variables $(n \ge m)$

$$\begin{array}{llll} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 & (E_1) \\ \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 & (E_2) \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m & (E_m) \end{array}$$

It is possible to transform the set of equations to an equivalent canonical form from which at least one solution can be easily deduced

D Nagesh Kumar, IISc LP_1: Intro

Transformation to Canonical form: More general case By performing n pivotal operations for any m variables (say, $x_1, x_2, \cdots x_m$, called pivotal variables) the system of equations is reduced to canonical form as follows $1x_1 + 0x_2 + \cdots + 0x_m + a_{1,m+1}^n x_{m+1} + \cdots + a_{1,n}^n x_n = b_1^n \qquad (E_1^c)$ $0x_1 + 1x_2 + \cdots + 0x_m + a_{2,m+1}^n x_{m+1} + \cdots + a_{2,n}^n x_n = b_2^n \qquad (E_2^c)$ \vdots

 (E_m^c)

Variables, x_{m+1}, \cdots, x_n , of above set of equations is known as nonpivotal variables or independent variables.

 $0x_1 + 0x_2 + \dots + 1x_m + a''_{m,m+1}x_{m+1} + \dots + a''_{mn}x_n = b''_m$

D Nagesh Kumar, IISc LP_1: Intro

Basic variable, Nonbasic variable, Basic solution, Basic feasible solution

One solution that can be obtained from the above set of equations is

$$x_i = b_i''$$
 for $i = 1, \dots, m$
 $x_i = 0$ for $i = (m+1), \dots, n$

This solution is known as basic solution.

Pivotal variables, $x_1, x_2, \dots x_m$, are also known as *basic variables*.

Nonpivotal variables, x_{m+1}, \dots, x_n , are known as *nonbasic variables*.

Basic solution is also known as basic feasible solution because it satisfies all the constraints as well as non-negativity criterion for all the variables

D Nagesh Kumar, IISc

LP_1: Intro