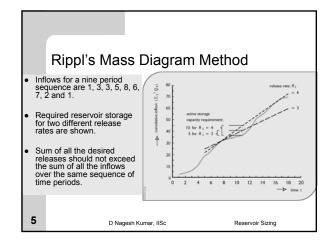
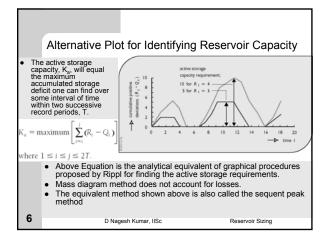

Annual demand for water at a particular site may be less than the total inflow, but the time distribution of demand may not match the time distribution of inflows resulting in surplus in some periods and deficit in some other periods. A reservoir is a storage structure that stores water in periods of excess flow (over demand) in order to enable a regulation of the storage to best meet the specified demands. The problem of reservoir sizing involves determination of the required storage capacity of the reservoir when inflows and demands in a sequence of periods are given.

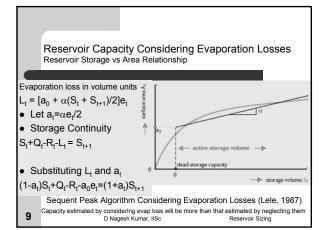

Reservoir Sizing

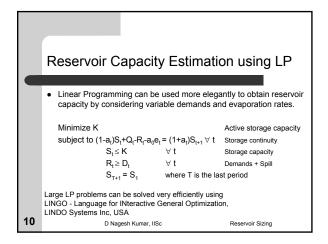

D Nagesh Kumar, IISc

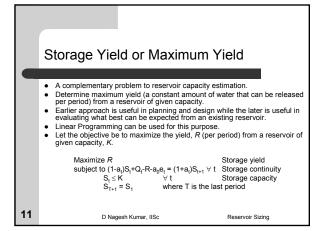
2

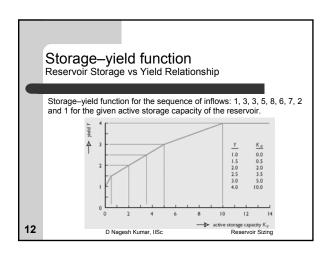
Sequent Peak Algorithm

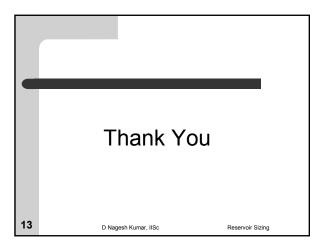
 Let K_t be the maximum total storage requirement needed for periods 1 through period t. As before, let R_t be the required release in period t, and Q_t be the inflow in that period. Setting K₀ equal to 0, the procedure involves calculating K_t using equation below for upto twice the total length of record.


$$K_t = R_t - Q_t + K_{t-1}$$
 if positive,
= 0 otherwise


 The maximum of all K_t is the required storage capacity for the specified releases R_t and inflows, Q_t.


7 D Nagesh Kumar, IISc


Reservoir Sizing


		time t	$(R_{t}-Q_{t}+K_{t-1})^{+}=K_{t}$	
	Sequent Peak Analyses	-1	3.5 - 1.0 + 0.0 = 2.5	
		2	3.5 - 3.0 + 2.5 = 3.0	
		3	3.5 - 3.0 + 3.0 = 3.5	
- Infl	nun for a nine period convene	4	3.5 - 5.0 + 3.5 = 2.0	
	ows for a nine period sequence 1, 3, 3, 5, 8, 6, 7, 2 and 1.	5	3.5 - 8.0 + 2.0 = 0.0	
u. c		6	3.5 - 6.0 + 0.0 = 0.0	
 Constant release required, R_t=3.5 		7	3.5 - 7.0 + 0.0 = 0.0	
	• • •	8	3.5 - 2.0 + 0.0 = 1.5	
This method does not require all		9	3.5 - 1.0 + 1.5 = 4.0	
the	the releases to be same.Stopping Criteria		3.5 - 1.0 + 4.0 = 6.5	
sto			3.5 - 3.0 + 6.5 = 7.0	
	K, value repeats for the corresponding period OR Twice the number of periods	3	3.5 - 3.0 + 7.0 = 7.5	Ka
		4	3.5 - 5.0 + 7.5 = 6.0	
		5	3.5 - 8.0 + 6.0 = 1.5	
		6	3.5 - 6.0 + 1.5 = 0.0	repetition begins
		7	3.5 - 7.0 + 0.0 = 0.0	
8		8	3.5 - 2.0 + 0.0 = 1.5	
٥	D Nagesh Kumar, IISc	9	3.5 - 1.0 + 1.5 = 4.0	

