

Introduction

2

6

- Decisions relating to most water resources systems need to be made in the face of hydrologic uncertainty.
- The hydrologic variables such as rainfall in a command area, inflow to a reservoir, evapotranspiration of crops which influence decision making in water resources, are all random variables.
- Optimization models developed for water resources management must therefore be formulated to give optimal decisions with an indication of the associated hydrologic uncertainty.

D Nagesh Kumar, IISc Stochastic Optimization - I

Stochastic Optimization - Approaches

- Two classical approaches to deal with the hydrologic uncertainty in optimization models are
 - Implicit Stochastic Optimization (ISO) and
 - Explicit Stochastic Optimization (ESO)
- Implicit Stochastic Optimization (ISO)

 - Hydrologic uncertainty is implicitly incorporated

 Optimization model itself is a deterministic model, in which the hydrologic inputs are varied with a number of equi-probable sequences and the deterministic optimization model is run once with each of the input sequences.
 - Output set is then statistically analyzed to generate a set of optimal decisions.

3 D Nagesh Kumar, IISc Stochastic Optimization - I

Stochastic Optimization - Approaches

- Explicit Stochastic Optimization (ESO)
 - Stochastic nature of the inputs is explicitly included in the optimization model through their probability distributions.
 - Optimization model is a stochastic model and a single run of the model specifies the optimal decisions.
 - Two commonly used ESO techniques
 - Chance Constrained Linear Programming (CCLP), and
 - Stochastic Dynamic Programming (SDP)
- · Background of probability theory is essential for ESO

D Nagesh Kumar, IISc Stochastic Optimization - I

Review of Basic Probability Theory

Random Variable

- A variable whose value is not known or cannot be measured with certainty (or is nondeterministic) is called a random variable. Examples of random variables of interest in water resources are rainfall, streamflow, time between hydrologic events (e.g. floods of a given magnitude), evaporation from a reservoir, groundwater levels, re-aeration and de-oxygenation rates etc.
- Any function of a random variable is also a random variable (r.v).
- We use an upper case letter to denote a random variable and the corresponding lower case letter to denote the value that it takes. For example, daily rainfall may be denoted as X. The value it takes on a particular day is denoted as x.
- We then associate *probabilities* with events such as $X \ge x$, $0 \le X \le x$, etc.

5 D Nagesh Kumar, IISc Stochastic Optimization - I

Discrete and Continuous Random Variables

- If a r.v. X can take on only discrete values x_1 , x_2 , x_3 , ..., then Xis a discrete random variable.
- An example of a discrete random variable is the number of rainy days in a year which may take on values such as, 10, 20,
- · A discrete random variable can assume a finite number of
- If a r.v. X can take on all real values in a range, then it is a continuous random variable.
- Most variables in hydrology are continuous random variables.
- The number of values that a continuous random variable can assume is infinite.

D Nagesh Kumar, IISc Stochastic Optimization - I

