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Stochastic Optimization - III

Reservoir Inflow as Stochastic 
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Process (Markov Process)
Inflow Transition Probabilities
Stochastic Dynamic Programming

Reservoir Inflow as Stochastic 
Process (Markov Process)

 In the development of the SDP recursive equations, the reservoir inflow is
treated as a stochastic process.

 It is assumed that the reservoir inflows follow a first order Markov Chain.
 A stochastic process {Xt} is said to be a first order Markov Chain if the
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 A stochastic process, {Xt}, is said to be a first order Markov Chain if the
dependence of future values of the process on the past values is
completely determined by its dependence on the current value alone.

 A first order Markov Chain has the property,

 The assumption of a Markov Chain implies that the dependence of the
inflow in the next period on the inflow during the current and all previous
periods is completely described by its dependence on the inflow during the
current period alone.

Transition Probabilities 

 Transition probabilities are used to measure the dependence of the inflow during period 
t+1 on the inflow during the period t. 

 Transition probability Pij
t is defined as the probability that the inflow during the period 

t+1 will be in the class interval j, given that the inflow during the period t lies in the class 
interval i.
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Pij
t = P[Qt+1=j / Qt=i]

where Qt=i, indicates that the inflow during the period t belongs to the discrete class 
interval i.

 In applications, the transition probabilities, Pij
t are estimated from historical inflow data. 

 A suitable inflow discretization scheme is arrived at first. 
 Each inflow value in the historical data set is then assigned the class interval to which it 

belongs.
 The number of times the inflow in period t + 1 goes to class j, when the inflow in the 

preceding period t belongs to class i, divided by the number of times the inflow belongs 
to class i in period t is taken as the estimate of Pij

t.
 Note that for this relative frequency approach of estimating the transition probabilities, 

inflow data must be available for a sufficiently long length of time.

Example
Sequence of inflows for 31 time periods t. Statistics of Observed Inflows
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Transition Probabilities 

 Probability distribution of the flows can be 
approximated by a histogram. 

 Histograms can be created by subdividing the 
entire range of random variable values, such as 
flows, into discrete intervals. 
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 For example, let each interval be two units of flow. 
 Counting the number of flows in each interval and 

then dividing those interval counts by the total 
number of counts results in the histogram shown 
in Figure. 

 In this case, just to compare this with what will be 
calculated later, the first flow, q1, is ignored.

 Figure shows a uniform unconditional probability 
distribution of the flow being in any of the possible 
discrete flow intervals. 

 It does not show the possible dependency of the 
probabilities of the random variable from time t to 
t+1.

Histogram showing an equal 
1/3 probability that the values 
of the random variable Qt will 
be in any one of the three two-
flow unit intervals.

Transition Probabilities 

 It is possible that the probability of being in a flow 
interval j in period t +1 depends on the actual 
observed flow interval i in period t.

 To see if the probability of being in any given 
interval of flows is dependent on the past flow
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interval of flows is dependent on the past flow 
interval, one can create a matrix. 

 The rows of the matrix are the flow intervals i in 
period t. The columns are the flow intervals j in the 
following period t +1. 

 Such a matrix is shown in Table. 
 The numbers in the matrix are based on the inflows 

and indicate the number of times a flow in interval j 
followed a flow in interval i.

 Given an observed flow in an interval i in period t, 
the probabilities of being in one of the possible 
intervals j in the next period t +1 must sum to 1. 

Matrix showing the number 
of times a flow in interval i in 
period t was followed by a 
flow in interval j in period 
t+1.
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Transition Probabilities 

 Thus, each number in each row of the matrix in Table 
can be divided by the total number of flow transitions 
in that row (the sum of the number of flows in the 
row) to obtain the probabilities of being in each 
interval j in t +1 given a flow in interval i in period t. 
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 In this case there are ten flows that followed each 
flow interval i, hence by dividing each number in 
each row of the matrix by 10 defines the transition 
probabilities Pij.

 These conditional or transition probabilities, shown in 
Table, correspond to the number of transitions shown 
in Table above.

 Transition probability Matrix. 
 The sum of the probabilities in each row equals 1.
 Matrices of transition probabilities whose rows sum 

to 1 are also called stochastic matrices or first-order 
Markov chains.

Matrix showing the 
probabilities Pij of having a 
flow in interval j in period t+1 
given an observed flow in 
interval i in period t.

Transition Probabilities 

 Using the transition probability matrix, one can 
compute the probability of observing a flow in any 
interval at any period in the future given the present 
flow interval.

 This can be done one period at a time.
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This can be done one period at a time. 
 For example assume the flow in the current time 

period t =1 is in interval i =3. 
 The probabilities, PQj,2, of being in any of the three 

intervals in the following time period t =2 are the 
probabilities shown in the third row of the matrix in 
the Table.

 The probabilities of being in an interval j in the 
following time period t=3 is the sum over all 
intervals i of the joint probabilities of being in 
interval i in period t =2 and making a transition to 
interval j in period t =3.

Matrix showing the 
probabilities Pij of having a 
flow in interval j in period t+1 
given an observed flow in 
interval i in period t.

Transition Probabilities 

 This operation can be continued to any future time 
period. Table illustrates the results of such 

l l ti f i f t i d i t
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calculations for six future periods, given a present 
period (t =1) flow in interval i = 3.

 Note that as the future time period t increases, the 
flow interval probabilities are converging to the 
unconditional probabilities – in this example 1/3, 
1/3, 1/3 – as shown in Figure. 

 The predicted probability of observing a future flow 
in any particular interval at some time in the future 
becomes less and less dependent on the current flow 
interval as the number of time periods increases 
between the current period and that future time 
period.

Probabilities of observing a flow in any 
flow interval i in a future time period t 
given a current flow in interval i=3. These 
probabilities are derived using the 
transition probabilities Pij. 

Steady State Probabilities 

 When these unconditional probabilities are 
reached, PQit will equal PQi,t+1 for each 
flow interval i. 

 To find these unconditional probabilities or
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 To find these unconditional probabilities or 
steady state probabilities directly, we can 
solve

 Along with 

(Use this equation and j-1 equations from above)

 Conditional or transition probabilities can 
be incorporated into stochastic optimization 
models of water resources systems.

Probabilities of observing a flow in any 
flow interval i in a future time period t 
given a current flow in interval i=3. These 
probabilities are derived using the 
transition probabilities Pij. 

Problem - 1
Compute the seasonal transitional probability matrices for the two seasons 

whose streamflow data is given below for 20 years. 
Assume that the seasonal streamflow data follows first order Markov chain. 
Divide the season 1 flows into three classes: 100-150, 151-200 and 201-250; 

and season 2 flows to four classes: 601-700, 701-800, 801-900 and 901-
1000 units.
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Problem - 2

Obtain steady state probabilities by solving the equations for the example 
problem of annual flows

Problem – 3
Obtain seasonal steady state probabilities For Problem 1 (Optional)
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Stochastic Dynamic Programming for 
Reservoir Operation

 Stochastic Dynamic Programming (SDP) belongs to the
Explicit Stochastic Optimization (ESO) class of optimization
models.

 SDP application to the reservoir operation problem
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 SDP application to the reservoir operation problem
– Inflow to the reservoir is considered as a random variable.

 The reservoir storage at the beginning of period t and inflow 
during the period t are treated as state variables.

 All variables involved in the decision process, such as the 
reservoir storage, inflow, and release are discretized into a 
finite number of class intervals. 

– A class interval for a variable has a representative value, generally taken 
as its midpoint. 

SDP for Reservoir Operation - Notation

 Q denotes the inflow; i and j are the class intervals (also referred to as states) of 
inflow in period t and period t + 1, respectively; 

 The representative values of inflow for the class i in period t and class j in period 
t+1 are denoted by Qit and Qj,t+1, respectively. 

 S denotes the reservoir storage; and k and l are the storage class intervals in periods t
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 S denotes the reservoir storage; and k and l are the storage class intervals in periods t
and t +1, respectively.

 Similarly, the representative values for storage in the class intervals k and l are 
denoted by Skt, and Sl,t+1, respectively. 

 From the storage continuity, then, we may write
Rkilt = Skt + Qit – Eklt – Sl,t+1 

where Rkilt is the reservoir release corresponding to the initial reservoir 
storage Skt, the final reservoir storage Sl,t+1, and the evaporation loss Eklt.

 The loss Eklt, depends on the initial and final reservoir storages, Skt and Sl,t+1.
 Since the inflow Q is a random variable, the reservoir storage and the 

release are also random variables.

SDP – System Performance Measure

 The system performance measure depends on the state of the system defined by the 
storage class intervals k and l, and the inflow class interval i for the period t. 

 We denote the system performance measure for a period t as Bkilt which corresponds 
to an initial storage state k, inflow state i, and final storage state l in period t. 

 The system performance measure may be for example the amount of hydropower
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 The system performance measure may be, for example, the amount of hydropower 
generated when a release of Rkilt is made from the reservoir, and the reservoir 
storages (which determine the head available for power generation) at the beginning 
and end of the period are respectively Skt and Sl,t+1. 

 Following backward recursion, the computations are assumed to start at the last 
period T of a distant year in the future and proceed backwards. 

 Each time period denotes a stage in the dynamic programming. 
That is, n = 1 when t=T; n=2 when t = T - 1, etc. 

 The index t takes values from T to 1, and the index n progressively increases with 
the stages in the SDP 

SDP – Recursive Relationship

 Let fn
t(k, i) denote the maximum expected value of the system 

performance measure up to the end of the last period T (i.e. for 
periods t, t + 1, ..., T), when n stages are remaining, and the 
time period corresponds to t.
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time period corresponds to t.
 With only one stage remaining (i.e. n = 1 and t = T), we write,

 Note that for a given k and i, only those values of l are feasible 
that result in a non-negative value of release, Rkilt. 

 Since this is the last period in computation, the performance 
measure Bkilt is determined with certainty for the known values 
of k, i and l.

SDP – Recursive Relationship
 When we move to the next stage, (n = 2, t = T - 1), the maximum value of the expected 

performance of the system is written as 

 When the computations are carried out for stage 2, period T - 1, the inflow during the period is
k
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known.
 However, since we are interested in obtaining the maximum expected system performance up to

the end of the last period T, we must know the inflow during the succeeding period T also.
 Since this is not known with certainty, the expected value of the system performance is got by

using the inflow transition probabilities Pij
T-1 for the period T - 1.

 It must be noted that the term within the summation denotes the maximized expected value of
the system performance up to the end of the last period T, when the inflow state during the
period T - 1 is i.

 The search for the optimum value of the performance is made over the end-of-the period
storage l.

 Since f1
T(k, i) is already determined in stage 1, for all values of k and i, f2

T-1(k, i) given by above
equation may be determined.

 The term {feasible l}, indicates that the search is made only over those end-of-the-period
storages which result in a non-negative release Rkilt or satisfy any other constraints.

SDP – Recursive Relationship

 The relationship may be generalized for any stage n and period t as

S l i th ti i l ill i ld t d t t li ithi f
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 Solving the equation recursively will yield a steady state policy within a few 
annual cycles, if the inflow transition probabilities Pij

t are assumed to 
remain the same every year, which implies that the reservoir inflows 
constitute a stationary stochastic process. 

 In general, the steady state is reached when the expected annual system 
performance, [f tn+T (k, i) - f tn (k, i)] remains constant for all values of k, i,
and t.

 When the steady state is reached, the optimal end-of-the-period storage class 
intervals, l, are defined for given k and i for every period t in the year. 

 This defines the optimal steady state policy and is denoted by l*(k, i, t).
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SDP – Example
 Obtain steady state policy for the following data, when the objective is to minimize 

the expected value of the sum of the square of deviations of release and storage from 
their respective targets, over a year with two periods. 

 Neglect evaporation loss. 
 If the release is greater than the release target, the deviation is set to zero. 
 Target Storage, TS=30; Target Release, Tr=30; Bkilt = (Rkilt –Tr)2 + (Sk

t –Ts)2

For period 1 For period 2
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p p

Inflow transition probabilities

SDP – Example – Solution
Find Bkilt values for all k, i, l, and t

For period 1
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For period 2

SDP – Example – Solution – Contd.
n=1, t=2

2
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SDP – Example – Solution – Contd.
n=2, t=1

2

2

2
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2

2

2

2

SDP – Example – Solution – Contd.
n=3, t=2
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SDP – Example – Solution – Contd.
n=4, t=1
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SDP – Example – Solution – Contd.
n=5, t=2
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n=6, t=1

SDP – Example – Solution – Contd.
n=7, t=2
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n=8, t=1

SDP – Example – Solution – Contd.

The computations are terminated after this stage because it is verified that the
annual system performance measure remains constant, (being nearly 96).
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SDP – Exercise Problems

1. Solve the previous problem, if the storage is greater than the storage target,
the deviation is set to zero whereas squared deviations from the release
targets on either side should be minimized.

2. Solve the previous problem, if only the absolute sum of deficits from the
storage and release targets are to be minimized.
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Thank You


