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Reservoir Inflow as Stochastic
Process (Markov Process)

e In the development of the SDP recursive equations, the reservoir inflow is
treated as a stochastic process.

Itis assumed that the reservoir inflows follow a first order Markov Chain.

A stochastic process, {X}, is said to be a first order Markov Chain if the
dependence of future values of the process on the past values is
completely determined by its dependence on the current value alone.

e Afirst order Markov Chain has the property,

P[XHI/XP Xt—l’ ey Xo] = P[X;H/X,]

e The assumption of a Markov Chain implies that the dependence of the
inflow in the next period on the inflow during the current and all previous
periods is completely described by its dependence on the inflow during the
current period alone.

D Nagesh Kumar, I1Sc Stochastic Optimization - Il

Transition Probabilities

e Transition probabilities are used to measure the dependence of the inflow during period
t+1 on the inflow during the period t.

e Transition probability Pyt is defined as the probability that the inflow during the period
t+1 will be in the class interval j, given that the inflow during the period t lies in the class
interval i.

Py = P[Qus=j / Q=i]
w?erea(ljll:i, indicates that the inflow during the period t belongs to the discrete class
interv: N

e Inapplications, the transition probabilities, P! are estimated from historical inflow data.

e Asuitable inflow discretization scheme is arrived at first.

. hEalch inflow value in the historical data set is then assigned the class interval to which it

elongs.

e The number of times the inflow in period t + 1 goes to class j, when the inflow in the
preceding period t belongs to class i, divided by the number of times the inflow belongs
to class i In period t is taken as the estimate of P;.

e Note that for this relative frequency approach of estimating the transition probabilities,
inflow data must be available for a sufficiently long length of time
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Transition Probabilities

e Probability distribution of the flows can be
approximated by a histogram.

e Histograms can be created by subdividing the
entire range of random variable values, such as
flows, into discrete intervals.

e For example, let each interval be two units of flow.
e Counting the number of flows in each interval and
then dividing those interval counts by the total
number of counts results in the histogram shown

in Figure.

e In this case, just to compare this with what will be
calculated later, the first flow, q;, is ignored. Histogram showing an equal

e Figure shows a uniform unconditional probability 1/3 probability that the values
distribution of the flow being in any of the possible  of the random variable Q, will
discrete flow intervals. be in any one of the three two-

e |t does not show the possible dependency of the flow unit intervals.
probabilities of the random variable from time t to
t+1.
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Transition Probabilities

e It is possible that the probability of being in a flow
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interval j in period t +1 depends on the actual flow interval
observed flow interval i in period t. flow interval int+1: j=
e Tosee if the probability of being in any given ine: i 23
interval of flows is dependent on the past flow
interval, one can create a matrix. ! 5.4 1
e The rows of the matrix are the flow intervals i in 2 3 4 3
period t. The columns are the flow intervals j in the
following period t +1. 3 (AR
e Such a matrix is shown in Table.
e The numbers in the matrix are based on the inflows Matrix showing the number

and indicate the number of times a flow in interval j  of times a flow in interval i in
fo_llowed aflow in mterv_al [ - _ period t was followed by a

e Given an observed flow in an interval i in period t, ¢\ 0 interval j in period
the probabilities of being in one of the possible Jinp
intervals j in the next period t +1 must sum to 1. t+l
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flow interval
flow interval int+1: j=

int:i 12
Transition Probabilities = 541
2 34 3
e Thus, each number in each row of the matrix in Table 3 2.2 6
can be divided by the total number of flow transitions
in that row (the sum of the number of flows in the
row) to obtain the probabilities of being in each flow interval in
interval j in t +1 given a flow in interval i in period t. g ooy t+ 1]
e In this case there are ten flows that followed each e | 2 3
flow interval i, hence by dividing each number in
each row of the matrix y 10 defines the transition 1 05 04 o0l

probabilities Py;.
e These conditional or transition probabilities, shown in
Table, correspond to the number of transitions shown 3 02 02 06

03 o4 03

in Table above.

Transition Probabilities

e Using the transition probability matrix, one can
compute the probability of observing a flow in any
interval at any period in the future given the present

flow interval. flow interval in
e This can be done one period at a time. fNow interval t+1:]
e For example assume the flow in the current time Ine i | 2 3
period t =1 is in interval i =3. 3 7o O
e The probabilities, PQ; ,, of being in any of the three 5 ¢ g
intervals in the followmg time period t =2 are the 2 03 04 03
probabilities shown in the third row of the matrix in = oz
the Table. - :

Transition probability Matrix.
The sum of the probabilities in each row equals 1.

Matrices of transition probabilities whose rows sum
to 1 are also called stochastic matrices or first-order
Markov chains.
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Matrix showing the
probabilities P;; of having a
flow in interval j in period t+1
given an observed flow in
interval i in period t.

Stochastic Optimization - Il

e The probabilities of being in an interval j in the

following time period t=3 is the sum over all
intervals i of the joint probabilities of being in
interval i in period t =2 and making a transition to
interval i in period t =3.
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Matrix showing the
probabilities P;; of having a
flow in interval j in period t+1
given an observed flow in
interval i in period t.
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Steady State Probabilities
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e This operation can be continued to any future time _E 028 028 044

period. Table illustrates the results of such
calculations for six future periods, given a present
period (t =1) flow in interval i = 3.

e Note that as the future time period t increases, the
flow interval probabilities are converging to the
unconditional probabilities — in this example 1/3,
1/3, 1/3 - as shown in Figure.

e The predicted probability of observing a future flow
in any particular interval at some time in the future
becomes less and less dependent on the current flow probabiicy PQ,

0312 0312 0378
0325 0325 0350
0.330 0.330 0340
0332 0332 0338
0333 0333 0334

R T ]

e When these unconditional probabilities are
reached, PQ;, will equal PQ;,, for each
flow interval i.

e To find these unconditional probabilities or
steady state probabilities directly, we can

solve
P = Z[LI' for all imervals |

e Along with

(Use this equation and j-1 equations from above)

interval as the number of time periods increases
between the current period and that future time

Probabilities of observing a flow in any
flow interval i in a future time period t

Conditional or transition probabilities can
be incorporated into stochastic optimization

flow interval |
I 2 3
o (] )

01 02 06
0328 028 044
0312 0312 0378
0325 0325 0350
0.330 0.330 0340
0332 0332 0338
0333 0333 0334
probabilicy FQ,

Probabilities of observing a flow in any
flow interval i in a future time period t

time period ¢

R T ]

period. given a current flow in interval i=3. These
probabilities are derived using the
transition probabilities Py.
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given a current flow in interval i=3. These

probabilities are derived using the

transition probabil Py.
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models of water resources systems.
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Problem - 1

Compute the seasonal transitional probability matrices for the two seasons
whose streamflow data is given below for 20 years.

Assume that the seasonal streamflow data follows first order Markov chain.

Divide the season 1 flows into three classes: 100-150, 151-200 and 201-250;
and season 2 flows to four classes: 601-700, 701-800, 801-900 and 901-

1000 units.
Year | Season | Year | Season | | Season 2

1 120 1 190 B0
2 180 12 35 923
3 210 13 815
4 150 14 673
5 230 15 10
6 135 16 220 5
7 196 17 115

8 170 18 190 23
9 2 19 205 RO
i) 1o 20 115 620
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Problem - 2

Obtain steady state probabilities by solving the equations for the example
problem of annual flows

Problem - 3
Obtain seasonal steady state probabilities For Problem 1 (Optional)
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Stochastic Dynamic Programming for
Reservoir Operation

e Stochastic Dynamic Programming (SDP) belongs to the
Explicit Stochastic Optimization (ESO) class of optimization
models.

e SDP application to the reservoir operation problem
- Inflow to the reservoir is considered as a random variable.

e The reservoir storage at the beginning of period t and inflow
during the period t are treated as state variables.

e All variables involved in the decision process, such as the
reservoir storage, inflow, and release are discretized into a
finite number of class intervals.

- Aclass interval for a variable has a representative value, generally taken
as its midpoint.
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SDP for Reservoir Operation - Notation

e Q denotes the inflow; i and j are the class intervals (also referred to as states) of
inflow in period t and period t + 1, respectively;

e The representative values of inflow for the class i in period t and class j in period
t+1 are denoted by Q; and Q .y, respectively.

e S denotes the reservoir storage; and k and | are the storage class intervals in periods t
and t +1, respectively.

e Similarly, the representative values for storage in the class intervals k and | are
denoted by Sy, and S, .., respectively.

e From the storage continuity, then, we may write

R = Sk + Qit = Exe= Sipea

where R, is the reservoir release corresponding to the initial reservoir
storage S,,, the final reservoir storage S,.,, and the evaporation loss Ey.

e The loss E,,, depends on the initial and final reservoir storages, S, and S, ;.

e Since the inflow Q is a random variable, the reservoir storage and the
release are also random variables.
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SDP — System Performance Measure

e The system performance measure depends on the state of the system defined by the
storage class intervals k and 1, and the inflow class interval i for the period t.

e We denote the system performance measure for a FEI’IOd tas By, which corresponds
to an initial storage state k, inflow state i, and final storage state fin period t.

e The system performance measure may be, for example, the amount of hydropower
generated when a release of Ry, is made from the reservoir, and the reservoir
storages (which determine the head available for power generallon) at the beginning
and end of the period are respectively S and S, ...

e Following backward recursion, the computations are assumed to start at the last
period T of a distant year in the future and proceed backwards.

e Each time period denotes a stage in the dynamic programming.

Thatis, n =1 when t=T; n=2 whent=T - 1, etc.

e The index t takes values from T to 1, and the index n progressively increases with

the stages ;?m:r;:;np

=T t=T f=1 f=2 =T-t
| Tl I ;o
T

T T T T 1
N=T42 n=Toln=T nalotcs naz nat
~——— Stages
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SDP — Recursive Relationship

o Letf (K, i) denote the maximum expected value of the system
performance measure up to the end of the last period T (i.e. for
periodst, t + 1, ..., T), when n stages are remaining, and the
time period corresponds to t.

o With only one stage remaining (i.e. n =1 and t = T), we write,

FI (ki) = Max [Bg] Yk i
{feasible I}

o Note that for a given k and 1, only those values of | are feasible
that result in a non-negative value of release, Ry;.

e Since this is the last period in computation, the performance
measure Bliilt is determined with certainty for the known values
of k,iandl.
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SDP — Recursive Relationship

- e When we move to the next stage, (n = 2, t =T - 1), the maximum value of the expected
performance of the system is written as
T-1 T~1 T ; :
£ =Max By + LB ANV ki
{feasible I} J

o When the computations are carried out for stage 2, period T - 1, the inflow during the period is
known.

o However, since we are interested in obtaining the maximum expected system performance up to
the end of the last period T, we must know the inflow during the succeeding period T also.

e Since this is not known with certainty, the expected value of the system performance is got by
using the inflow transition probabilities P;™ for the period T - 1.

e It must be noted that the term within the summation denotes the maximized expected value of
the system performance up to the end of the last period T, when the inflow state during the
period T-1isi.

e The search for the optimum value of the performance is made over the end-of-the period
storage |.

e Since f,"(k, i) is already determined in stage 1, for all values of k and i, f,"*(k, i) given by above
equation may be determined.

e The term {feasible I}, indicates that the search is made only over those end-of-the-period
storages which result in a non-negative release R, or satisfy any other constraints.
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SDP — Recursive Relationship

e The relationship may be generalized for any stage n and period t as

£} Gk, iy = Max (B, + ZF FH L) 1V ki
{feasible I} J

e Solving the equation recursively will yield a steady state policy within a few
annual cycles, if the inflow transition probabilities Py are assumed to
remain the same every year, which implies that the reservmr inflows
constitute a stationary stochastic process.

e In general, the steady state is reached when the expected annual system
performance, [f {7 (k, i) - f, (k, i)] remains constant for all values of k, i,
andt.

e \When the steady state is reached, the optimal end-of-the-period storage class
intervals, |, are defined for given k and i for every period t in the year.

e This defines the optimal steady state policy and is denoted by I"(k, i, t).
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SDP Example

Obtain steady state policy for the following data, when the objective is to minimize
the expected value of the sum of the square of deviations of release and storage from
their respective targets, over a year with two periods.
- e Neglect evaporation loss.
If the release is greater than the release target, the deviation is set to zero.
e Target Storage, Ts=30; Target Release, T,=30; By = (Rygi —T,)? + (S -To)?

For period 1 For period 2
i [N k See i Qu k Sk
1 15 1 30 1 35 1 20
2 25 2 40 2 45 2 30
Inflow transition probabilities
t=2 t=1
J J
t=1 i, 1 2 t=2 i, 1 2
1 0.5 0.5 1 0.4 0.6
2 0.3 0.7 2 0.8 0.2
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SDP — Example — Solution
Find B, values for all k, i, I, and t

@ For period 1 I

SDP — Example — Solution — Contd.
n=1, t=2

C |
£ (ki) =Min [By,] V. ki
{feasible [}

By
k i I=1 1=2 flk,i) | 1*
1 1 125.00 325.00 125.00 1
1 2 100.00 125.00 100.00 1
2 1 0.00 25.00 0.00 1
2 2 0.00 0.00 000 |1,2
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koS i o U S By Ry (S{-TF (Ru-T) Bu
1 30 1 15 1 20 o 25 o 25 25
1 30 1 15 2 30 0 15 0 225 225
1 3 2 25 1 20 0 35 0 0 0
1 3 2 25 2 30 0 25 0 25 25
2 40 1 15 i 20 0 35 100 0 100
2 40 1 15 2 30 o 25 100 25 125
2 40 2 25 1 20 0 45 100 o 100
2 40 2 25 2 30 0 35 100 0 100 | For period 2
koS i 4 IS Ew Ra (S-TF (Ra-TF Bu
1 20 1 35 1 30 0 25 100 25 125
12 1 35 2 40 0 15 100 225 325
1 20 2 45 1 30 o 35 100 0 100
1 20 2 45 2 40 0 25 100 25 125
2 3 1 35 1 30 0 35 o 0 0
2 3 1 35 2 40 0 25 o 25 25
2 30 2 45 1 30 0 45 0 0 0
2 3 2 45 2 40 35 o 0 o
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SDP — Example — Solution — Contd.
n=2,t=1
e SRR Y —
I
{feasible [}
k=1;i=11=1; By, + LB} f! (L) = 25,0 +0.50%125.0 + 0.50*100.0
= 137.
=1,i=1,1=2 By + LB f} (1,) 2250+050*00+050~00
225.0
=1i=2,1=1; By, + ZE) /,E (1, ) = 0.00 + 0.30*125.0 + 0.70*100.0
=107.5
=1,i=2,1=2 By + SPf2 (L)) = 2500 + 0.30%0.0 + 0.70*0.0
=250
=2,i=1,1=1; Bun*‘z )
=100.00 + 0.50*125.00 + 0.50*100.00
=225 B+ LR (L)) ki
K i 1=1 1=2 I*
1 1 137.50 225.00 137.50 1
1 2 107.50 25.00 25.00 2
2 1 212.50 125.00 125.00 2
2 2 207.50 100.00 100.00 2
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SDP — Example — Solution — Contd.
n=3, t=2

£ (k) =Min [Byy, + P} i D] Vi
{feasible 1} 7

2+ LB Gd) ki)
k i I=1 1=2 I*
1 1 195.00 435.00 195.00 1
1 2 215.00 245.00 215.00 1
2 1 70.00 135.00 70.00 1
2 2 115.00 120.00 115.00 1
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SDP — Example — Solution — Contd.
n=4, t=1

fi (ki) = Min [Bg, + TR f§ (UP] Vki
{feasible I} 7

u+ LB n £kl
k i I=1 = I*
1 1 230.00 31150 230.00 1
1 2 209.00 126.50 126.50 2
2 1 305.00 217.50 217.50 2
2 2 309.00 201.50 201.50 2
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SDP — Example — Solution — Contd.
n=5, t=2

& i 11 1:2 (ki) [
1 1 292.90 532.90 292.90 1
1 2 309.30 339.30 309.30 1
2 1 167.90 232.90 167.90 1
2 2 209.30 214.30 209.30 1

n=6, t=1
k i I:1 1:2 (kD) I*
1 1 326.10 413.60 326.10 1
1 2 304.38 221.88 221.88 2
2 1 401.10 313.60 313.60 2
2 2 404.38 296.88 296.88 2
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SDP — Example — Solution — Contd.

n=7, t=2
k i 11 1.2 fE (ki) I*
1 1 388.57 628.57 388.57 1
1 2 405.26 435.26 405.26 1
2 1 263.57 328.57 263.57 1
2 2 305.26 31026 305.26 1
n=8, t=1
k i 13 1:2 S (ki) I*
1 1 42191 509.41 42191 1
1 2 400.25 317.75 317.75 2
2 1 496.91 409.41 409.41 2
2 2 500.25 392.75 392.75 2
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SDP — Example — Solution — Contd.

The computations are terminated after this stage because it is verified that the
- annual system performance measure remains constant, (being nearly 96).

£, D~ £ @, 1) =421.91-326.10 = 95.81)

Steady state policy for period 1 Steady state policy for period 2
k i > k i I*
1 1 1 1 1 1
1 2 2 1 2 1
2 1 2 2 1 1
2 2 2 2 2 1
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SDP — Exercise Problems

. Solve the previous problem, if the storage is greater than the storage target,

the deviation is set to zero whereas squared deviations from the release

targets on either side should be minimized.

. Solve the previous problem, if only the absolute sum of deficits from the

storage and release targets are to be minimized.

D Nagesh Kumar, IS¢

Stochastic Optimization - Il

Thank You
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