CE 213 Systems Techniques in Water Resources Engg

Assignment -1

1. Locate the stationary points, if any, and the global optimum of the following functions. Determine if each function is convex or concave.

a.
$$f(X) = 6x^4 + 8x^3$$

b.
$$f(X) = 3x^2 - 5x + 6$$

c.
$$f(X) = x^3 - x - x^2$$

2. Locate the desired optimum of the following functions of multiple variables:

a.
$$Minimize\ f(X) = 2x_1^2 + 2x_2^2 + x_1x_2 - 6x_1$$

b.
$$Minimize\ f(X) = x_1^2 + x_2^2 + x_1x_2 + x_2^3$$

c.
$$Maximize f(X) = 8x_1^3 - x_1^2 + x_1x_2 - 7x_2$$

3. Minimize $f(X) = 5x_1^2 + 2x_2 - x_1x_2$ subject to $x_1 + x_2 = 3$

4. Minimize
$$f(X) = x_1^2 + x_2^2$$
 subject to $x_1 - x_2 = 5$

5. Optimize $f(X) = -x_1^2 - x_2^2 + 4x_1 + 6x_2$ subject to $x_1 + x_2 \le 2$ and $-2x_1 - 3x_2 + 12 \ge 0$ Solution: $f_{\text{max}}(X) = 17/2$; $x_1 = 1/2$ and $x_2 = 3/2$

6. Optimize
$$f(X) = -2x^2 + 5xy - 4y^2 + 18x$$
 subject to $x + y \le 7$
Solution: $f_{\text{max}}(X) = 74.02$; $x_1 = 109/22$ and $x_2 = 45/22$

7. Minimize
$$f(X) = (x_1 - 5)^2 + 4x_1 + x_2^2$$
 subject to $x_1 + 2x_2 \ge 5$ and $x_1 + 5x_2 \le 7$ Solution: $f_{\min}(X) = 16.9$; $x_1 = 3.68$ and $x_2 = 0.67$

8. From the solution obtained for problems 5, 6 and 7, check whether the Kuhn-Tucker conditions are satisfied.

Last date for submission: February 12, 2020.